These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 30009593)
21. High-valent nonheme iron-oxo species in biomimetic oxidations. Shan X; Que L J Inorg Biochem; 2006 Apr; 100(4):421-33. PubMed ID: 16530841 [TBL] [Abstract][Full Text] [Related]
22. Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes. Nam W; Lee YM; Fukuzumi S Acc Chem Res; 2014 Apr; 47(4):1146-54. PubMed ID: 24524675 [TBL] [Abstract][Full Text] [Related]
23. Olefin cis-Dihydroxylation and Aliphatic C-H Bond Oxygenation by a Dioxygen-Derived Electrophilic Iron-Oxygen Oxidant. Chatterjee S; Paine TK Angew Chem Int Ed Engl; 2015 Aug; 54(32):9338-42. PubMed ID: 26088714 [TBL] [Abstract][Full Text] [Related]
24. C-H Bond Cleavage by Bioinspired Nonheme Oxoiron(IV) Complexes, Including Hydroxylation of n-Butane. Kleespies ST; Oloo WN; Mukherjee A; Que L Inorg Chem; 2015 Jun; 54(11):5053-64. PubMed ID: 25751610 [TBL] [Abstract][Full Text] [Related]
25. Aliphatic C-C Bond Cleavage of α-Hydroxy Ketones by Non-Heme Iron(II) Complexes: Mechanistic Insight into the Reaction Catalyzed by 2,4'-Dihydroxyacetophenone Dioxygenase. Rahaman R; Paria S; Paine TK Inorg Chem; 2015 Nov; 54(22):10576-86. PubMed ID: 26536067 [TBL] [Abstract][Full Text] [Related]
26. What Drives Radical Halogenation versus Hydroxylation in Mononuclear Nonheme Iron Complexes? A Combined Experimental and Computational Study. Gérard EF; Yadav V; Goldberg DP; de Visser SP J Am Chem Soc; 2022 Jun; 144(24):10752-10767. PubMed ID: 35537044 [TBL] [Abstract][Full Text] [Related]
27. Biomimetic hydrocarbon oxidation catalyzed by nonheme iron(III) complexes with peracids: evidence for an Fe(V)=O species. Lee SH; Han JH; Kwak H; Lee SJ; Lee EY; Kim HJ; Lee JH; Bae C; Lee SN; Kim Y; Kim C Chemistry; 2007; 13(33):9393-8. PubMed ID: 17685379 [TBL] [Abstract][Full Text] [Related]
28. Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases. Van Stappen C; Lehnert N Inorg Chem; 2018 Apr; 57(8):4252-4269. PubMed ID: 29608298 [TBL] [Abstract][Full Text] [Related]
29. Two interconverting Fe(IV) intermediates in aliphatic chlorination by the halogenase CytC3. Galonić DP; Barr EW; Walsh CT; Bollinger JM; Krebs C Nat Chem Biol; 2007 Feb; 3(2):113-6. PubMed ID: 17220900 [TBL] [Abstract][Full Text] [Related]
30. Mononuclear Nonheme High-Spin Iron(III)-Acylperoxo Complexes in Olefin Epoxidation and Alkane Hydroxylation Reactions. Wang B; Lee YM; Clémancey M; Seo MS; Sarangi R; Latour JM; Nam W J Am Chem Soc; 2016 Feb; 138(7):2426-36. PubMed ID: 26816269 [TBL] [Abstract][Full Text] [Related]
31. Chemoselective and biomimetic hydroxylation of hydrocarbons by non-heme micro-oxo-bridged diiron(III) catalysts using m-CPBA as oxidant. Mayilmurugan R; Stoeckli-Evans H; Suresh E; Palaniandavar M Dalton Trans; 2009 Jul; (26):5101-14. PubMed ID: 19562169 [TBL] [Abstract][Full Text] [Related]
32. Dioxygen Reduction and Bioinspired Oxidations by Non-heme Iron(II)-α-Hydroxy Acid Complexes. Chatterjee S; Paine TK Acc Chem Res; 2023 Nov; 56(22):3175-3187. PubMed ID: 37938969 [TBL] [Abstract][Full Text] [Related]
33. Structural and Functional Insights into a Nonheme Iron- and α-Ketoglutarate-Dependent Halogenase That Catalyzes Chlorination of Nucleotide Substrates. Dai L; Zhang X; Hu Y; Shen J; Zhang Q; Zhang L; Min J; Chen CC; Liu Y; Huang JW; Guo RT Appl Environ Microbiol; 2022 May; 88(9):e0249721. PubMed ID: 35435717 [TBL] [Abstract][Full Text] [Related]
34. Ligand topology effect on the reactivity of a mononuclear nonheme iron(IV)-oxo complex in oxygenation reactions. Hong S; Lee YM; Cho KB; Sundaravel K; Cho J; Kim MJ; Shin W; Nam W J Am Chem Soc; 2011 Aug; 133(31):11876-9. PubMed ID: 21736350 [TBL] [Abstract][Full Text] [Related]
35. Redox potential and C-H bond cleaving properties of a nonheme Fe(IV)=O complex in aqueous solution. Wang D; Zhang M; Bühlmann P; Que L J Am Chem Soc; 2010 Jun; 132(22):7638-44. PubMed ID: 20476758 [TBL] [Abstract][Full Text] [Related]
36. Iron(II)-α-keto acid complexes of tridentate ligands on gold nanoparticles: the effect of ligand geometry and immobilization on their dioxygen-dependent reactivity. Bera A; Sheet D; Paine TK Dalton Trans; 2023 Jan; 52(4):1062-1073. PubMed ID: 36602242 [TBL] [Abstract][Full Text] [Related]
37. Axial ligand effect on the rate constant of aromatic hydroxylation by iron(IV)-oxo complexes mimicking cytochrome P450 enzymes. Kumar D; Sastry GN; de Visser SP J Phys Chem B; 2012 Jan; 116(1):718-30. PubMed ID: 22132821 [TBL] [Abstract][Full Text] [Related]
38. Oxidative properties of a nonheme Ni(II)(O2) complex: Reactivity patterns for C-H activation, aromatic hydroxylation and heteroatom oxidation. Latifi R; Tahsini L; Kumar D; Sastry GN; Nam W; de Visser SP Chem Commun (Camb); 2011 Oct; 47(38):10674-6. PubMed ID: 21892444 [TBL] [Abstract][Full Text] [Related]
39. Why Nonheme Iron Halogenases Do Not Fluorinate C-H Bonds: A Computational Investigation. Vennelakanti V; Li GL; Kulik HJ Inorg Chem; 2023 Dec; 62(48):19758-19770. PubMed ID: 37972340 [TBL] [Abstract][Full Text] [Related]
40. Recent Advances in the Selective Oxidation of Alkyl C-H Bonds Catalyzed by Iron Coordination Complexes. Canta M; Rodríguez M; Costas M Top Curr Chem; 2016; 372():27-54. PubMed ID: 26318344 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]