BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30009597)

  • 1. Physicochemical Analysis of DPPC and Photopolymerizable Liposomal Binary Mixture for Spatiotemporal Drug Release.
    Kenaan A; Cheng J; Qi D; Chen D; Cui D; Song J
    Anal Chem; 2018 Aug; 90(15):9487-9494. PubMed ID: 30009597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization of photopolymerizable binary liposomes containing diacetylenic and saturated phospholipids.
    Temprana CF; Duarte EL; Taira MC; Lamy MT; del Valle Alonso S
    Langmuir; 2010 Jun; 26(12):10084-92. PubMed ID: 20355709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light induced cytosolic drug delivery from liposomes with gold nanoparticles.
    Lajunen T; Viitala L; Kontturi LS; Laaksonen T; Liang H; Vuorimaa-Laukkanen E; Viitala T; Le Guével X; Yliperttula M; Murtomäki L; Urtti A
    J Control Release; 2015 Apr; 203():85-98. PubMed ID: 25701610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhomogeneous crystal grain formation in DPPC-DSPC based thermosensitive liposomes determines content release kinetics.
    Lu T; Ten Hagen TLM
    J Control Release; 2017 Feb; 247():64-72. PubMed ID: 28042084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally gated liposomes.
    Chen WH; Regen SL
    J Am Chem Soc; 2005 May; 127(18):6538-9. PubMed ID: 15869267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of fatty acids on the permeability barrier of model and biological membranes.
    Arouri A; Lauritsen KE; Nielsen HL; Mouritsen OG
    Chem Phys Lipids; 2016 Oct; 200():139-146. PubMed ID: 27725161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled and Targeted Drug Delivery by a UV-responsive Liposome for Overcoming Chemo-resistance in Non-Hodgkin Lymphoma.
    Li H; Guo K; Wu C; Shu L; Guo S; Hou J; Zhao N; Wei L; Man X; Zhang L
    Chem Biol Drug Des; 2015 Oct; 86(4):783-94. PubMed ID: 25739815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel class of photo-triggerable liposomes containing DPPC:DC(8,9)PC as vehicles for delivery of doxorubcin to cells.
    Yavlovich A; Singh A; Blumenthal R; Puri A
    Biochim Biophys Acta; 2011 Jan; 1808(1):117-26. PubMed ID: 20691151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural effect of cationic amphiphiles in diacetylenic photopolymerizable membranes.
    Temprana CF; Duarte EL; Femia AL; Alonso Sdel V; Lamy MT
    Chem Phys Lipids; 2012 Jul; 165(5):589-600. PubMed ID: 22771924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-visibility light-intensity laser-triggered release of entrapped calcein from 1,2-bis (tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine liposomes is mediated through a type I photoactivation pathway.
    Yavlovich A; Viard M; Gupta K; Sine J; Vu M; Blumenthal R; Tata DB; Puri A
    Int J Nanomedicine; 2013; 8():2575-87. PubMed ID: 23901274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insertion of bacteriorhodopsin into polymerized diacetylenic phosphatidylcholine bilayers.
    Ahl PL; Price R; Smuda J; Gaber BP; Singh A
    Biochim Biophys Acta; 1990 Oct; 1028(2):141-53. PubMed ID: 2223788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of polymerizable lipid bilayers: water profile of a diacetylenic lipid bilayer using elastic neutron scattering.
    Blechner SL; Skita V; Rhodes DG
    Biochim Biophys Acta; 1990 Mar; 1022(3):291-5. PubMed ID: 2317485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependent drug release from DPPC:C12H25-PNIPAM-COOH liposomes: control of the drug loading/release by modulation of the nanocarriers' components.
    Pippa N; Meristoudi A; Pispas S; Demetzos C
    Int J Pharm; 2015 May; 485(1-2):374-82. PubMed ID: 25776453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encapsulation stability and temperature-dependent release kinetics from hydrogel-immobilised liposomes.
    Ullrich M; Hanuš J; Dohnal J; Štěpánek F
    J Colloid Interface Sci; 2013 Mar; 394():380-5. PubMed ID: 23276685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizations on the Stability and Release Properties of β-ionone Loaded Thermosensitive Liposomes (TSLs).
    Chen L; Liang R; Wang Y; Yokoyama W; Chen M; Zhong F
    J Agric Food Chem; 2018 Aug; 66(31):8336-8345. PubMed ID: 29847116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liposome-loaded chitosan physical hydrogel: toward a promising delayed-release biosystem.
    Billard A; Pourchet L; Malaise S; Alcouffe P; Montembault A; Ladavière C
    Carbohydr Polym; 2015 Jan; 115():651-7. PubMed ID: 25439944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticles enable selective light-induced contents release from liposomes.
    Paasonen L; Laaksonen T; Johans C; Yliperttula M; Kontturi K; Urtti A
    J Control Release; 2007 Sep; 122(1):86-93. PubMed ID: 17628159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Principles of rational design of thermally targeted liposomes for local drug delivery.
    Tejera-Garcia R; Parkkila P; Zamotin V; Kinnunen PK
    Nanomedicine; 2014 Aug; 10(6):1243-52. PubMed ID: 24685945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.