These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30009599)

  • 1. Metal-Binding Isosteres as New Scaffolds for Metalloenzyme Inhibitors.
    Dick BL; Cohen SM
    Inorg Chem; 2018 Aug; 57(15):9538-9543. PubMed ID: 30009599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing Metal-Binding Isosteres of 8-Hydroxyquinoline as Metalloenzyme Inhibitor Scaffolds.
    Seo H; Jackl MK; Kalaj M; Cohen SM
    Inorg Chem; 2022 May; 61(19):7631-7641. PubMed ID: 35507007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salicylate metal-binding isosteres as fragments for metalloenzyme inhibition.
    Jackl MK; Seo H; Karges J; Kalaj M; Cohen SM
    Chem Sci; 2022 Feb; 13(7):2128-2136. PubMed ID: 35308862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating Metal-Ligand Interactions of Metal-Binding Isosteres Using Model Complexes.
    Seo H; Prosser KE; Kalaj M; Karges J; Dick BL; Cohen SM
    Inorg Chem; 2021 Nov; 60(22):17161-17172. PubMed ID: 34699201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isosteres of hydroxypyridinethione as drug-like pharmacophores for metalloenzyme inhibition.
    Adamek RN; Credille CV; Dick BL; Cohen SM
    J Biol Inorg Chem; 2018 Oct; 23(7):1129-1138. PubMed ID: 30003339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of heterocycle content on metal binding isostere coordination.
    Dick BL; Patel A; Cohen SM
    Chem Sci; 2020 Jul; 11(26):6907-6914. PubMed ID: 33209243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-Activity Relationships in Metal-Binding Pharmacophores for Influenza Endonuclease.
    Credille CV; Dick BL; Morrison CN; Stokes RW; Adamek RN; Wu NC; Wilson IA; Cohen SM
    J Med Chem; 2018 Nov; 61(22):10206-10217. PubMed ID: 30351002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting Metalloenzymes.
    Cohen SM
    Acc Chem Res; 2017 Aug; 50(8):2007-2016. PubMed ID: 28715203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of donor atom identity on metal-binding pharmacophore coordination.
    Dick BL; Patel A; McCammon JA; Cohen SM
    J Biol Inorg Chem; 2017 Jun; 22(4):605-613. PubMed ID: 28389830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxylic Acid Isostere Derivatives of Hydroxypyridinones as Core Scaffolds for Influenza Endonuclease Inhibitors.
    Stokes RW; Kohlbrand AJ; Seo H; Sankaran B; Karges J; Cohen SM
    ACS Med Chem Lett; 2023 Jan; 14(1):75-82. PubMed ID: 36655124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the influence of the protein environment on metal-binding pharmacophores.
    Martin DP; Blachly PG; McCammon JA; Cohen SM
    J Med Chem; 2014 Aug; 57(16):7126-35. PubMed ID: 25116076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SAR Exploration of Tight-Binding Inhibitors of Influenza Virus PA Endonuclease.
    Credille CV; Morrison CN; Stokes RW; Dick BL; Feng Y; Sun J; Chen Y; Cohen SM
    J Med Chem; 2019 Nov; 62(21):9438-9449. PubMed ID: 31536340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting Metalloenzymes by Boron-Containing Metal-Binding Pharmacophores.
    Xiao YC; Yu JL; Dai QQ; Li G; Li GB
    J Med Chem; 2021 Dec; 64(24):17706-17727. PubMed ID: 34875836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photorelease of a metal-binding pharmacophore from a Ru(II) polypyridine complex.
    Karges J; Stokes RW; Cohen SM
    Dalton Trans; 2021 Mar; 50(8):2757-2765. PubMed ID: 33564808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase.
    Nocentini A; Angeli A; Carta F; Winum JY; Zalubovskis R; Carradori S; Capasso C; Donald WA; Supuran CT
    J Enzyme Inhib Med Chem; 2021 Dec; 36(1):561-580. PubMed ID: 33615947
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Prosser KE; Kohlbrand AJ; Seo H; Kalaj M; Cohen SM
    Chem Commun (Camb); 2021 May; 57(40):4934-4937. PubMed ID: 33870988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calorimetric studies of the interactions of metalloenzyme active site mimetics with zinc-binding inhibitors.
    Robinson SG; Burns PT; Miceli AM; Grice KA; Karver CE; Jin L
    Dalton Trans; 2016 Jul; 45(29):11817-29. PubMed ID: 27373714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MeLAD: an integrated resource for metalloenzyme-ligand associations.
    Li G; Su Y; Yan YH; Peng JY; Dai QQ; Ning XL; Zhu CL; Fu C; McDonough MA; Schofield CJ; Huang C; Li GB
    Bioinformatics; 2020 Feb; 36(3):904-909. PubMed ID: 31504189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site.
    Martin DP; Blachly PG; Marts AR; Woodruff TM; de Oliveira CA; McCammon JA; Tierney DL; Cohen SM
    J Am Chem Soc; 2014 Apr; 136(14):5400-6. PubMed ID: 24635441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel metal-chelating inhibitor of protein farnesyltransferase.
    Hamasaki A; Naka H; Tamanoi F; Umezawa K; Otsuka M
    Bioorg Med Chem Lett; 2003 May; 13(9):1523-6. PubMed ID: 12699746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.