These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 30009899)
1. Facile immobilization of Pseudomonas fluorescens lipase on polyaniline nanofibers (PANFs-PFL): A route to develop robust nanobiocatalyst. Dwivedee BP; Soni S; Laha JK; Banerjee UC Int J Biol Macromol; 2018 Nov; 119():8-14. PubMed ID: 30009899 [TBL] [Abstract][Full Text] [Related]
2. Tailoring a stable and recyclable nanobiocatalyst by immobilization of surfactant treated Burkholderia cepacia lipase on polyaniline nanofibers for biocatalytic application. Soni S; Dwivedee BP; Banerjee UC Int J Biol Macromol; 2020 Oct; 161():573-586. PubMed ID: 32512104 [TBL] [Abstract][Full Text] [Related]
3. Tailoring a robust and recyclable nanobiocatalyst by immobilization of Pseudomonas fluorescens lipase on carbon nanofiber and its application in synthesis of enantiopure carboetomidate analogue. Dwivedee BP; Soni S; Bhimpuria R; Laha JK; Banerjee UC Int J Biol Macromol; 2019 Jul; 133():1299-1310. PubMed ID: 30940586 [TBL] [Abstract][Full Text] [Related]
4. Development of nanobiocatalysts through the immobilization of Pseudomonas fluorescens lipase for applications in efficient kinetic resolution of racemic compounds. Dwivedee BP; Bhaumik J; Rai SK; Laha JK; Banerjee UC Bioresour Technol; 2017 Sep; 239():464-471. PubMed ID: 28538202 [TBL] [Abstract][Full Text] [Related]
5. Immobilization of Lipase from Pseudomonas fluorescens on Porous Polyurea and Its Application in Kinetic Resolution of Racemic 1-Phenylethanol. Han H; Zhou Y; Li S; Wang Y; Kong XZ ACS Appl Mater Interfaces; 2016 Oct; 8(39):25714-25724. PubMed ID: 27618157 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the immobilization of lipase from Pseudomonas fluorescens on divinylsulfone or p-benzoquinone activated support. Rios NS; Neto DMA; Dos Santos JCS; Fechine PBA; Fernández-Lafuente R; Gonçalves LRB Int J Biol Macromol; 2019 Aug; 134():936-945. PubMed ID: 31121223 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Enzymatic Performance of Immobilized Wang Q; Xiong J; Xu H; Sun W; Pan X; Cui S; Lv S; Zhang Y Molecules; 2024 Jun; 29(12):. PubMed ID: 38930986 [TBL] [Abstract][Full Text] [Related]
8. Immobilization of lipase from Pseudomonas fluorescens on glyoxyl-octyl-agarose beads: Improved stability and reusability. Rios NS; Mendez-Sanchez C; Arana-Peña S; Rueda N; Ortiz C; Gonçalves LRB; Fernandez-Lafuente R Biochim Biophys Acta Proteins Proteom; 2019 Sep; 1867(9):741-747. PubMed ID: 31202001 [TBL] [Abstract][Full Text] [Related]
9. Highly stabilized lipase in polyaniline nanofibers for surfactant-mediated esterification of ibuprofen. Hong SG; Kim HS; Kim J Langmuir; 2014 Jan; 30(3):911-5. PubMed ID: 24417226 [TBL] [Abstract][Full Text] [Related]
10. Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems. Lima LN; Oliveira GC; Rojas MJ; Castro HF; Da Rós PC; Mendes AA; Giordano RL; Tardioli PW J Ind Microbiol Biotechnol; 2015 Apr; 42(4):523-35. PubMed ID: 25626526 [TBL] [Abstract][Full Text] [Related]
12. Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents. Rios NS; Morais EG; Dos Santos Galvão W; Andrade Neto DM; Dos Santos JCS; Bohn F; Correa MA; Fechine PBA; Fernandez-Lafuente R; Gonçalves LRB Int J Biol Macromol; 2019 Dec; 141():313-324. PubMed ID: 31491511 [TBL] [Abstract][Full Text] [Related]
13. Exquisite stability and catalytic performance of immobilized lipase on novel fabricated nanocellulose fused polypyrrole/graphene oxide nanocomposite: Characterization and application. Asmat S; Husain Q Int J Biol Macromol; 2018 Oct; 117():331-341. PubMed ID: 29857098 [TBL] [Abstract][Full Text] [Related]
14. LiCl-induced improvement of multilayer nanofibrous lipase for biodiesel synthesis. Liu CX; Zhang SP; Su ZG; Wang P Bioresour Technol; 2012 Jan; 103(1):266-72. PubMed ID: 22033374 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of electrospun PVA/Zn Işik C; Arabaci G; Ispirli Doğaç Y; Deveci İ; Teke M Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1226-1235. PubMed ID: 30889658 [TBL] [Abstract][Full Text] [Related]
16. Immobilization of Pseudomonas fluorescens lipase onto magnetic nanoparticles for resolution of 2-octanol. Xun EN; Lv XL; Kang W; Wang JX; Zhang H; Wang L; Wang Z Appl Biochem Biotechnol; 2012 Oct; 168(3):697-707. PubMed ID: 22847187 [TBL] [Abstract][Full Text] [Related]
17. Optimization of the parameters that affect the synthesis of magnetic copolymer styrene-divinilbezene to be used as efficient matrix for immobilizing lipases. Silva MVC; Aguiar LG; de Castro HF; Freitas L World J Microbiol Biotechnol; 2018 Nov; 34(11):169. PubMed ID: 30406564 [TBL] [Abstract][Full Text] [Related]
18. Facile fabrication of a recyclable nanobiocatalyst: immobilization of Soni S; Dwivedee BP; Chand Banerjee U RSC Adv; 2018 Aug; 8(49):27763-27774. PubMed ID: 35542692 [TBL] [Abstract][Full Text] [Related]
19. Exploration of the expeditious potential of Pseudomonas fluorescens lipase in the kinetic resolution of racemic intermediates and its validation through molecular docking. Soni S; Dwivedee BP; Sharma VK; Patel G; Banerjee UC Chirality; 2018 Jan; 30(1):85-94. PubMed ID: 29064594 [TBL] [Abstract][Full Text] [Related]
20. Purification, refolding, and characterization of recombinant Pseudomonas fluorescens lipase. Kim KR; Kwon DY; Yoon SH; Kim WY; Kim KH Protein Expr Purif; 2005 Jan; 39(1):124-9. PubMed ID: 15596368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]