These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 30009943)

  • 21. Metabolism of L-fucose and L-rhamnose in Escherichia coli: aerobic-anaerobic regulation of L-lactaldehyde dissimilation.
    Baldomà L; Aguilar J
    J Bacteriol; 1988 Jan; 170(1):416-21. PubMed ID: 3275622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cross-induction of the L-fucose system by L-rhamnose in Escherichia coli.
    Chen YM; Tobin JF; Zhu Y; Schleif RF; Lin EC
    J Bacteriol; 1987 Aug; 169(8):3712-9. PubMed ID: 3301811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Xylose, arabinose, and rhamnose fermentation by Bacteroides ruminicola.
    Turner KW; Roberton AM
    Appl Environ Microbiol; 1979 Jul; 38(1):7-12. PubMed ID: 485153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of three beta-galactoside phosphorylases from Clostridium phytofermentans: discovery of d-galactosyl-beta1->4-l-rhamnose phosphorylase.
    Nakajima M; Nishimoto M; Kitaoka M
    J Biol Chem; 2009 Jul; 284(29):19220-7. PubMed ID: 19491100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-utilization of glycerol and lignocellulosic hydrolysates enhances anaerobic 1,3-propanediol production by Clostridium diolis.
    Xin B; Wang Y; Tao F; Li L; Ma C; Xu P
    Sci Rep; 2016 Jan; 6():19044. PubMed ID: 26750307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fermentative production of 1-propanol from d-glucose, l-rhamnose and glycerol using recombinant Escherichia coli.
    Matsubara M; Urano N; Yamada S; Narutaki A; Fujii M; Kataoka M
    J Biosci Bioeng; 2016 Oct; 122(4):421-6. PubMed ID: 27072298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioethanol production by a xylan fermenting thermophilic isolate Clostridium strain DBT-IOC-DC21.
    Singh N; Puri M; Tuli DK; Gupta RP; Barrow CJ; Mathur AS
    Anaerobe; 2018 Jun; 51():89-98. PubMed ID: 29729318
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of kinetic parameters of 1,3-propanediol fermentation by Clostridium diolis using statistically optimized medium.
    Kaur G; Srivastava AK; Chand S
    Bioprocess Biosyst Eng; 2012 Sep; 35(7):1147-56. PubMed ID: 22331102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense.
    Bunesova V; Lacroix C; Schwab C
    BMC Microbiol; 2016 Oct; 16(1):248. PubMed ID: 27782805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Isolation and characterization of H2-producing strains Enterobacter sp. and Clostridium sp].
    Zhi XP; Liu QF; Wu XB; Xu HJ; Long MN
    Sheng Wu Gong Cheng Xue Bao; 2007 Jan; 23(1):152-6. PubMed ID: 17366905
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of pH and substrate concentrations on dark fermentative biohydrogen production from xylose by extreme thermophilic mixed culture.
    Qiu C; Shi P; Xiao S; Sun L
    World J Microbiol Biotechnol; 2017 Jan; 33(1):7. PubMed ID: 27858340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of 1,3-propanediol using a novel 1,3-propanediol dehydrogenase from isolated Clostridium butyricum and co-biotransformation of whole cells.
    Yun J; Yang M; Magocha TA; Zhang H; Xue Y; Zhang G; Qi X; Sun W
    Bioresour Technol; 2018 Jan; 247():838-843. PubMed ID: 30060420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli.
    Altaras NE; Cameron DC
    Biotechnol Prog; 2000; 16(6):940-6. PubMed ID: 11101319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 1,3-Propanediol production in a two-step process fermentation from renewable feedstock.
    Mendes FS; González-Pajuelo M; Cordier H; François JM; Vasconcelos I
    Appl Microbiol Biotechnol; 2011 Nov; 92(3):519-27. PubMed ID: 21656140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preeminent productivity of 1,3-propanediol by Clostridium butyricum JKT37 and the role of using calcium carbonate as pH neutraliser in glycerol fermentation.
    Tee ZK; Jahim JM; Tan JP; Kim BH
    Bioresour Technol; 2017 Jun; 233():296-304. PubMed ID: 28285221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic engineering of propanediol pathways.
    Cameron DC; Altaras NE; Hoffman ML; Shaw AJ
    Biotechnol Prog; 1998; 14(1):116-25. PubMed ID: 9496676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel low pH fermentation process for the production of acetate and propylene glycol from carbohydrate wastes.
    Veeravalli SS; Mathews AP
    Enzyme Microb Technol; 2019 Jan; 120():8-15. PubMed ID: 30396403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioconversion of glycerol to 1,3-propanediol: a mathematical model-based nutrient feeding approach for high production using Clostridium diolis.
    Kaur G; Srivastava AK; Chand S
    Bioresour Technol; 2013 Aug; 142():82-7. PubMed ID: 23743422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conversion of sugars to 1,2-propanediol by Thermoanaerobacterium thermosaccharolyticum HG-8.
    Altaras NE; Etzel MR; Cameron DC
    Biotechnol Prog; 2001; 17(1):52-6. PubMed ID: 11170479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simple strategy of repeated batch cultivation for enhanced production of 1,3-propanediol using Clostridium diolis.
    Kaur G; Srivastava AK; Chand S
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1061-8. PubMed ID: 22576964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.