BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30010088)

  • 1. Ensembling convolutional and long short-term memory networks for electrocardiogram arrhythmia detection.
    Warrick PA; Nabhan Homsi M
    Physiol Meas; 2018 Oct; 39(11):114002. PubMed ID: 30010088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECG.
    Plesinger F; Nejedly P; Viscor I; Halamek J; Jurak P
    Physiol Meas; 2018 Sep; 39(9):094002. PubMed ID: 30102251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing single-lead short ECG recordings using dense convolutional neural networks and feature-based post-processing to detect atrial fibrillation.
    Parvaneh S; Rubin J; Rahman A; Conroy B; Babaeizadeh S
    Physiol Meas; 2018 Aug; 39(8):084003. PubMed ID: 30044235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms.
    Sodmann P; Vollmer M; Nath N; Kaderali L
    Physiol Meas; 2018 Oct; 39(10):104005. PubMed ID: 30235165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ECG recordings.
    Rubin J; Parvaneh S; Rahman A; Conroy B; Babaeizadeh S
    J Electrocardiol; 2018; 51(6S):S18-S21. PubMed ID: 30122456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ranking of the most reliable beat morphology and heart rate variability features for the detection of atrial fibrillation in short single-lead ECG.
    Christov I; Krasteva V; Simova I; Neycheva T; Schmid R
    Physiol Meas; 2018 Sep; 39(9):094005. PubMed ID: 30102603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of atrial fibrillation and other abnormal rhythms from ECG using a multi-layer classifier architecture.
    Mukherjee A; Dutta Choudhury A; Datta S; Puri C; Banerjee R; Singh R; Ukil A; Bandyopadhyay S; Pal A; Khandelwal S
    Physiol Meas; 2019 Jun; 40(5):054006. PubMed ID: 30650387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AF detection from ECG recordings using feature selection, sparse coding, and ensemble learning.
    Rizwan M; Whitaker BM; Anderson DV
    Physiol Meas; 2018 Dec; 39(12):124007. PubMed ID: 30524091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using single lead electrocardiograms of variable length.
    Kamaleswaran R; Mahajan R; Akbilgic O
    Physiol Meas; 2018 Mar; 39(3):035006. PubMed ID: 29369044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AFCNNet: Automated detection of AF using chirplet transform and deep convolutional bidirectional long short term memory network with ECG signals.
    Radhakrishnan T; Karhade J; Ghosh SK; Muduli PR; Tripathy RK; Acharya UR
    Comput Biol Med; 2021 Oct; 137():104783. PubMed ID: 34481184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscaled Fusion of Deep Convolutional Neural Networks for Screening Atrial Fibrillation From Single Lead Short ECG Recordings.
    Fan X; Yao Q; Cai Y; Miao F; Sun F; Li Y
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1744-1753. PubMed ID: 30106699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep convolutional neural network model to classify heartbeats.
    Acharya UR; Oh SL; Hagiwara Y; Tan JH; Adam M; Gertych A; Tan RS
    Comput Biol Med; 2017 Oct; 89():389-396. PubMed ID: 28869899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A support vector machine approach for AF classification from a short single-lead ECG recording.
    Liu N; Sun M; Wang L; Zhou W; Dang H; Zhou X
    Physiol Meas; 2018 Jun; 39(6):064004. PubMed ID: 29794340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting atrial fibrillation by deep convolutional neural networks.
    Xia Y; Wulan N; Wang K; Zhang H
    Comput Biol Med; 2018 Feb; 93():84-92. PubMed ID: 29291535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of atrial fibrillation from ECG recordings using decision tree ensemble with multi-level features.
    Shao M; Bin G; Wu S; Bin G; Huang J; Zhou Z
    Physiol Meas; 2018 Sep; 39(9):094008. PubMed ID: 30187894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Fourier-Bessel expansion and LSTM on multi-lead ECG for cardiac abnormalities identification.
    Sawant NK; Patidar S
    Physiol Meas; 2022 Dec; 43(12):. PubMed ID: 36410043
    [No Abstract]   [Full Text] [Related]  

  • 17. A Comprehensive Study of Complexity and Performance of Automatic Detection of Atrial Fibrillation: Classification of Long ECG Recordings Based on the PhysioNet Computing in Cardiology Challenge 2017.
    Kleyko D; Osipov E; Wiklund U
    Biomed Phys Eng Express; 2020 Feb; 6(2):025010. PubMed ID: 33438636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low-complexity algorithm for detection of atrial fibrillation using an ECG.
    Sadr N; Jayawardhana M; Pham TT; Tang R; Balaei AT; de Chazal P
    Physiol Meas; 2018 Jun; 39(6):064003. PubMed ID: 29791322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ECG signal classification based on deep CNN and BiLSTM.
    Cheng J; Zou Q; Zhao Y
    BMC Med Inform Decis Mak; 2021 Dec; 21(1):365. PubMed ID: 34963455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An SVM approach for identifying atrial fibrillation.
    Gliner V; Yaniv Y
    Physiol Meas; 2018 Sep; 39(9):094007. PubMed ID: 30187892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.