These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 30010219)
1. Disruption of SOX6 gene using CRISPR/Cas9 technology for gamma-globin reactivation: An approach towards gene therapy of β-thalassemia. Shariati L; Rohani F; Heidari Hafshejani N; Kouhpayeh S; Boshtam M; Mirian M; Rahimmanesh I; Hejazi Z; Modarres M; Pieper IL; Khanahmad H J Cell Biochem; 2018 Nov; 119(11):9357-9363. PubMed ID: 30010219 [TBL] [Abstract][Full Text] [Related]
2. Inducing indel mutation in the SOX6 gene by zinc finger nuclease for gamma reactivation: An approach towards gene therapy of beta thalassemia. Modares Sadeghi M; Shariati L; Hejazi Z; Shahbazi M; Tabatabaiefar MA; Khanahmad H J Cell Biochem; 2018 Mar; 119(3):2512-2519. PubMed ID: 28941328 [TBL] [Abstract][Full Text] [Related]
3. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. Khosravi MA; Abbasalipour M; Concordet JP; Berg JV; Zeinali S; Arashkia A; Azadmanesh K; Buch T; Karimipoor M Eur J Pharmacol; 2019 Jul; 854():398-405. PubMed ID: 31039344 [TBL] [Abstract][Full Text] [Related]
4. Reactivation of γ-globin expression using a minicircle DNA system to treat β-thalassemia. Ma SP; Gao XX; Zhou GQ; Zhang HK; Yang JM; Wang WJ; Song XM; Chen HY; Lu DR Gene; 2022 Apr; 820():146289. PubMed ID: 35143940 [TBL] [Abstract][Full Text] [Related]
5. Genetic disruption of the KLF1 gene to overexpress the γ-globin gene using the CRISPR/Cas9 system. Shariati L; Khanahmad H; Salehi M; Hejazi Z; Rahimmanesh I; Tabatabaiefar MA; Modarressi MH J Gene Med; 2016 Oct; 18(10):294-301. PubMed ID: 27668420 [TBL] [Abstract][Full Text] [Related]
6. SOX6 Downregulation Induces Li J; Lai Y; Luo J; Luo L; Liu R; Liu Z; Zhao W Biomed Res Int; 2017; 2017():9496058. PubMed ID: 29333458 [TBL] [Abstract][Full Text] [Related]
7. Featured Article: Modulation of fetal hemoglobin in hereditary persistence of fetal hemoglobin deletion type-2, compared to Sicilian δβ-thalassemia, by BCL11A and SOX6-targeting microRNAs. Fornari TA; Lanaro C; Albuquerque DM; Ferreira R; Costa FF Exp Biol Med (Maywood); 2017 Feb; 242(3):267-274. PubMed ID: 27591578 [TBL] [Abstract][Full Text] [Related]
8. CRISPR/Cas9-based multiplex genome editing of BCL11A and HBG efficiently induces fetal hemoglobin expression. Han Y; Tan X; Jin T; Zhao S; Hu L; Zhang W; Kurita R; Nakamura Y; Liu J; Li D; Zhang Z; Fang X; Huang S Eur J Pharmacol; 2022 Mar; 918():174788. PubMed ID: 35093321 [TBL] [Abstract][Full Text] [Related]
9. Epigenetic inactivation of ERF reactivates γ-globin expression in β-thalassemia. Bao X; Zhang X; Wang L; Wang Z; Huang J; Zhang Q; Ye Y; Liu Y; Chen D; Zuo Y; Liu Q; Xu P; Huang B; Fang J; Lao J; Feng X; Li Y; Kurita R; Nakamura Y; Yu W; Ju C; Huang C; Mohandas N; Li D; Zhao C; Xu X Am J Hum Genet; 2021 Apr; 108(4):709-721. PubMed ID: 33735615 [TBL] [Abstract][Full Text] [Related]
10. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice. Ou Z; Niu X; He W; Chen Y; Song B; Xian Y; Fan D; Tang D; Sun X Sci Rep; 2016 Sep; 6():32463. PubMed ID: 27581487 [TBL] [Abstract][Full Text] [Related]
11. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Martyn GE; Wienert B; Yang L; Shah M; Norton LJ; Burdach J; Kurita R; Nakamura Y; Pearson RCM; Funnell APW; Quinlan KGR; Crossley M Nat Genet; 2018 Apr; 50(4):498-503. PubMed ID: 29610478 [TBL] [Abstract][Full Text] [Related]
12. Acyclovir induces fetal hemoglobin via downregulation of γ-globin repressors, BCL11A and SOX6 trans-acting factors. Ali H; Khan F; Ghulam Musharraf S Biochem Pharmacol; 2021 Aug; 190():114612. PubMed ID: 34010599 [TBL] [Abstract][Full Text] [Related]
13. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies. Paschoudi K; Yannaki E; Psatha N Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298481 [TBL] [Abstract][Full Text] [Related]
14. Reactivation of γ-globin in adult β-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing. Li C; Psatha N; Sova P; Gil S; Wang H; Kim J; Kulkarni C; Valensisi C; Hawkins RD; Stamatoyannopoulos G; Lieber A Blood; 2018 Jun; 131(26):2915-2928. PubMed ID: 29789357 [TBL] [Abstract][Full Text] [Related]
15. Long noncoding RNA HBBP1 enhances γ-globin expression through the ETS transcription factor ELK1. Ma SP; Xi HR; Gao XX; Yang JM; Kurita R; Nakamura Y; Song XM; Chen HY; Lu DR Biochem Biophys Res Commun; 2021 May; 552():157-163. PubMed ID: 33744764 [TBL] [Abstract][Full Text] [Related]
16. Generation of an in vitro model of β-thalassemia using the CRISPR/Cas9 genome editing system. Ajami M; Atashi A; Kaviani S; Kiani J; Soleimani M J Cell Biochem; 2020 Feb; 121(2):1420-1430. PubMed ID: 31596028 [TBL] [Abstract][Full Text] [Related]
17. CRISPR/Cas9, a promising approach for the treatment of β-thalassemia: a systematic review. Khiabani A; Kohansal MH; Keshavarzi A; Shahraki H; Kooshesh M; Karimzade M; Gholizadeh Navashenaq J Mol Genet Genomics; 2023 Jan; 298(1):1-11. PubMed ID: 36403178 [TBL] [Abstract][Full Text] [Related]
18. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C > T) mutation in β-thalassemia-derived iPSCs. Xu P; Tong Y; Liu XZ; Wang TT; Cheng L; Wang BY; Lv X; Huang Y; Liu DP Sci Rep; 2015 Jul; 5():12065. PubMed ID: 26156589 [TBL] [Abstract][Full Text] [Related]