These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 30010219)
21. Transcriptional silencing of fetal hemoglobin expression by NonO. Li X; Chen M; Liu B; Lu P; Lv X; Zhao X; Cui S; Xu P; Nakamura Y; Kurita R; Chen B; Huang DCS; Liu DP; Liu M; Zhao Q Nucleic Acids Res; 2021 Sep; 49(17):9711-9723. PubMed ID: 34379783 [TBL] [Abstract][Full Text] [Related]
22. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease. Cai L; Bai H; Mahairaki V; Gao Y; He C; Wen Y; Jin YC; Wang Y; Pan RL; Qasba A; Ye Z; Cheng L Stem Cells Transl Med; 2018 Jan; 7(1):87-97. PubMed ID: 29164808 [TBL] [Abstract][Full Text] [Related]
23. CRISPR/Cas9-mediated β-globin gene knockout in rabbits recapitulates human β-thalassemia. Yang Y; Kang X; Hu S; Chen B; Xie Y; Song B; Zhang Q; Wu H; Ou Z; Xian Y; Fan Y; Li X; Lai L; Sun X J Biol Chem; 2021; 296():100464. PubMed ID: 33639162 [TBL] [Abstract][Full Text] [Related]
25. Surface plasmon resonance based analysis of the binding of LYAR protein to the rs368698783 (G>A) polymorphic Aγ-globin gene sequences mutated in β-thalassemia. Gemmo C; Breveglieri G; Marzaro G; Lampronti I; Cosenza LC; Gasparello J; Zuccato C; Fabbri E; Borgatti M; Chilin A; Finotti A; Gambari R Anal Bioanal Chem; 2019 Nov; 411(29):7699-7707. PubMed ID: 31300855 [TBL] [Abstract][Full Text] [Related]
26. A natural DNMT1 mutation elevates the fetal hemoglobin level via epigenetic derepression of the γ-globin gene in β-thalassemia. Gong Y; Zhang X; Zhang Q; Zhang Y; Ye Y; Yu W; Shao C; Yan T; Huang J; Zhong J; Wang L; Li Y; Wang L; Xu X Blood; 2021 Mar; 137(12):1652-1657. PubMed ID: 33227819 [TBL] [Abstract][Full Text] [Related]
27. Reactivation of γ-globin expression through Cas9 or base editor to treat β-hemoglobinopathies. Wang L; Li L; Ma Y; Hu H; Li Q; Yang Y; Liu W; Yin S; Li W; Fu B; Kurita R; Nakamura Y; Liu M; Lai Y; Li D Cell Res; 2020 Mar; 30(3):276-278. PubMed ID: 31911671 [No Abstract] [Full Text] [Related]
28. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Zeng S; Lei S; Qu C; Wang Y; Teng S; Huang P Hum Genet; 2023 Dec; 142(12):1677-1703. PubMed ID: 37878144 [TBL] [Abstract][Full Text] [Related]
29. Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells. Pavani G; Fabiano A; Laurent M; Amor F; Cantelli E; Chalumeau A; Maule G; Tachtsidi A; Concordet JP; Cereseto A; Mavilio F; Ferrari G; Miccio A; Amendola M Blood Adv; 2021 Mar; 5(5):1137-1153. PubMed ID: 33635334 [TBL] [Abstract][Full Text] [Related]
30. Co-Treatment of Erythroid Cells from β-Thalassemia Patients with CRISPR-Cas9-Based β Cosenza LC; Zuccato C; Zurlo M; Gambari R; Finotti A Genes (Basel); 2022 Sep; 13(10):. PubMed ID: 36292612 [TBL] [Abstract][Full Text] [Related]
31. Machine learning-based approaches for identifying human blood cells harboring CRISPR-mediated fetal chromatin domain ablations. Li Y; Zaheri S; Nguyen K; Liu L; Hassanipour F; Pace BS; Bleris L Sci Rep; 2022 Jan; 12(1):1481. PubMed ID: 35087158 [TBL] [Abstract][Full Text] [Related]
32. Plastrum testudinis induces γ-globin gene expression through epigenetic histone modifications within the γ-globin gene promoter via activation of the p38 MAPK signaling pathway. Qian X; Chen J; Zhao D; Guo L; Qian X Int J Mol Med; 2013 Jun; 31(6):1418-28. PubMed ID: 23588991 [TBL] [Abstract][Full Text] [Related]
33. CTD small phosphatase like 2 (CTDSPL2) can increase ε- and γ-globin gene expression in K562 cells and CD34+ cells derived from umbilical cord blood. Ma YN; Zhang X; Yu HC; Zhang JW BMC Cell Biol; 2010 Oct; 11():75. PubMed ID: 20932329 [TBL] [Abstract][Full Text] [Related]
34. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Ye L; Wang J; Tan Y; Beyer AI; Xie F; Muench MO; Kan YW Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10661-5. PubMed ID: 27601644 [TBL] [Abstract][Full Text] [Related]
35. CRISPR-mediated gene modification of hematopoietic stem cells with beta-thalassemia IVS-1-110 mutation. Gabr H; El Ghamrawy MK; Almaeen AH; Abdelhafiz AS; Hassan AOS; El Sissy MH Stem Cell Res Ther; 2020 Sep; 11(1):390. PubMed ID: 32912325 [TBL] [Abstract][Full Text] [Related]
36. One-step genetic correction of hemoglobin E/beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 system. Wattanapanitch M; Damkham N; Potirat P; Trakarnsanga K; Janan M; U-Pratya Y; Kheolamai P; Klincumhom N; Issaragrisil S Stem Cell Res Ther; 2018 Feb; 9(1):46. PubMed ID: 29482624 [TBL] [Abstract][Full Text] [Related]
37. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Dever DP; Bak RO; Reinisch A; Camarena J; Washington G; Nicolas CE; Pavel-Dinu M; Saxena N; Wilkens AB; Mantri S; Uchida N; Hendel A; Narla A; Majeti R; Weinberg KI; Porteus MH Nature; 2016 Nov; 539(7629):384-389. PubMed ID: 27820943 [TBL] [Abstract][Full Text] [Related]
38. Synergistic effect of two β globin gene cluster mutations leading to the hereditary persistence of fetal hemoglobin (HPFH) phenotype. Hariharan P; Sawant M; Gorivale M; Manchanda R; Colah R; Ghosh K; Nadkarni A Mol Biol Rep; 2017 Oct; 44(5):413-417. PubMed ID: 28879539 [TBL] [Abstract][Full Text] [Related]
39. An Aγ-globin G->A gene polymorphism associated with β Breveglieri G; Bianchi N; Cosenza LC; Gamberini MR; Chiavilli F; Zuccato C; Montagner G; Borgatti M; Lampronti I; Finotti A; Gambari R BMC Med Genet; 2017 Aug; 18(1):93. PubMed ID: 28851297 [TBL] [Abstract][Full Text] [Related]
40. Advances in genome editing: the technology of choice for precise and efficient β-thalassemia treatment. Ali G; Tariq MA; Shahid K; Ahmad FJ; Akram J Gene Ther; 2021 Feb; 28(1-2):6-15. PubMed ID: 32355226 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]