BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 30010541)

  • 1. Membrane insertion of α-xenorhabdolysin in near-atomic detail.
    Schubert E; Vetter IR; Prumbaum D; Penczek PA; Raunser S
    Elife; 2018 Jul; 7():. PubMed ID: 30010541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray and Cryo-electron Microscopy Structures of Monalysin Pore-forming Toxin Reveal Multimerization of the Pro-form.
    Leone P; Bebeacua C; Opota O; Kellenberger C; Klaholz B; Orlov I; Cambillau C; Lemaitre B; Roussel A
    J Biol Chem; 2015 May; 290(21):13191-201. PubMed ID: 25847242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and mechanism of the two-component α-helical pore-forming toxin YaxAB.
    Bräuning B; Bertosin E; Praetorius F; Ihling C; Schatt A; Adler A; Richter K; Sinz A; Dietz H; Groll M
    Nat Commun; 2018 May; 9(1):1806. PubMed ID: 29728606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A syringe-like injection mechanism in Photorhabdus luminescens toxins.
    Gatsogiannis C; Lang AE; Meusch D; Pfaumann V; Hofnagel O; Benz R; Aktories K; Raunser S
    Nature; 2013 Mar; 495(7442):520-3. PubMed ID: 23515159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the oligomerization and architecture of eukaryotic membrane pore-forming toxins.
    Mechaly AE; Bellomio A; Gil-Cartón D; Morante K; Valle M; González-Mañas JM; Guérin DM
    Structure; 2011 Feb; 19(2):181-91. PubMed ID: 21300287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-EM elucidates mechanism of action of bacterial pore-forming toxins.
    Mondal AK; Lata K; Singh M; Chatterjee S; Chauhan A; Puravankara S; Chattopadhyay K
    Biochim Biophys Acta Biomembr; 2022 Nov; 1864(11):184013. PubMed ID: 35908609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assemblies of pore-forming toxins visualized by atomic force microscopy.
    Yilmaz N; Kobayashi T
    Biochim Biophys Acta; 2016 Mar; 1858(3):500-11. PubMed ID: 26577274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of Pneumolysin.
    van Pee K; Neuhaus A; D'Imprima E; Mills DJ; Kühlbrandt W; Yildiz Ö
    Elife; 2017 Mar; 6():. PubMed ID: 28323617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Basis of the Pore-Forming Toxin/Membrane Interaction.
    Li Y; Li Y; Mengist HM; Shi C; Zhang C; Wang B; Li T; Huang Y; Xu Y; Jin T
    Toxins (Basel); 2021 Feb; 13(2):. PubMed ID: 33572271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process.
    Iacovache I; De Carlo S; Cirauqui N; Dal Peraro M; van der Goot FG; Zuber B
    Nat Commun; 2016 Jul; 7():12062. PubMed ID: 27405240
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Wilson JS; Churchill-Angus AM; Davies SP; Sedelnikova SE; Tzokov SB; Rafferty JB; Bullough PA; Bisson C; Baker PJ
    Nat Commun; 2019 Jul; 10(1):2900. PubMed ID: 31263098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taking Toll on Membranes: Curious Cases of Bacterial β-Barrel Pore-Forming Toxins.
    Mondal AK; Chattopadhyay K
    Biochemistry; 2020 Jan; 59(2):163-170. PubMed ID: 31608629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Intermolecular π-Stacking Interaction Drives Conformational Changes Necessary to β-Barrel Formation in a Pore-Forming Toxin.
    Burns JR; Morton CJ; Parker MW; Tweten RK
    mBio; 2019 Jul; 10(4):. PubMed ID: 31266869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Mechanistic Features of ClyA-Like α-Pore-Forming Toxins.
    Bräuning B; Groll M
    Toxins (Basel); 2018 Aug; 10(9):. PubMed ID: 30142951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane insertion of a Tc toxin in near-atomic detail.
    Gatsogiannis C; Merino F; Prumbaum D; Roderer D; Leidreiter F; Meusch D; Raunser S
    Nat Struct Mol Biol; 2016 Oct; 23(10):884-890. PubMed ID: 27571177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural, physicochemical and dynamic features conserved within the aerolysin pore-forming toxin family.
    Cirauqui N; Abriata LA; van der Goot FG; Dal Peraro M
    Sci Rep; 2017 Oct; 7(1):13932. PubMed ID: 29066778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new model for pore formation by cholesterol-dependent cytolysins.
    Reboul CF; Whisstock JC; Dunstone MA
    PLoS Comput Biol; 2014 Aug; 10(8):e1003791. PubMed ID: 25144725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism.
    Degiacomi MT; Iacovache I; Pernot L; Chami M; Kudryashev M; Stahlberg H; van der Goot FG; Dal Peraro M
    Nat Chem Biol; 2013 Oct; 9(10):623-9. PubMed ID: 23912165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore-forming activity of clostridial binary toxins.
    Knapp O; Benz R; Popoff MR
    Biochim Biophys Acta; 2016 Mar; 1858(3):512-25. PubMed ID: 26278641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane insertion: The strategies of toxins (review).
    Lesieur C; Vécsey-Semjén B; Abrami L; Fivaz M; Gisou van der Goot F
    Mol Membr Biol; 1997; 14(2):45-64. PubMed ID: 9253764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.