These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 30010541)

  • 21. Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin.
    Leung C; Dudkina NV; Lukoyanova N; Hodel AW; Farabella I; Pandurangan AP; Jahan N; Pires Damaso M; Osmanović D; Reboul CF; Dunstone MA; Andrew PW; Lonnen R; Topf M; Saibil HR; Hoogenboom BW
    Elife; 2014 Dec; 3():e04247. PubMed ID: 25457051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophila are present in plant and human pathogens.
    Vigneux F; Zumbihl R; Jubelin G; Ribeiro C; Poncet J; Baghdiguian S; Givaudan A; Brehélin M
    J Biol Chem; 2007 Mar; 282(13):9571-9580. PubMed ID: 17229739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. X-ray crystallography shines a light on pore-forming toxins.
    Johnstone BA; Christie MP; Morton CJ; Parker MW
    Methods Enzymol; 2021; 649():1-46. PubMed ID: 33712183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in cryoEM and its impact on β-pore forming proteins.
    Boyd CM; Bubeck D
    Curr Opin Struct Biol; 2018 Oct; 52():41-49. PubMed ID: 30125772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE-family alpha pore-forming toxins.
    Dementiev A; Board J; Sitaram A; Hey T; Kelker MS; Xu X; Hu Y; Vidal-Quist C; Chikwana V; Griffin S; McCaskill D; Wang NX; Hung SC; Chan MK; Lee MM; Hughes J; Wegener A; Aroian RV; Narva KE; Berry C
    BMC Biol; 2016 Aug; 14(1):71. PubMed ID: 27576487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural determinants for membrane insertion, pore formation and translocation of Clostridium difficile toxin B.
    Genisyuerek S; Papatheodorou P; Guttenberg G; Schubert R; Benz R; Aktories K
    Mol Microbiol; 2011 Mar; 79(6):1643-54. PubMed ID: 21231971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-particle cryo-EM reveals conformational variability of the oligomeric VCC β-barrel pore in a lipid bilayer.
    Sengupta N; Mondal AK; Mishra S; Chattopadhyay K; Dutta S
    J Cell Biol; 2021 Dec; 220(12):. PubMed ID: 34617964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clostridial pore-forming toxins: powerful virulence factors.
    Popoff MR
    Anaerobe; 2014 Dec; 30():220-38. PubMed ID: 24952276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How Lipid Membranes Affect Pore Forming Toxin Activity.
    Rojko N; Anderluh G
    Acc Chem Res; 2015 Dec; 48(12):3073-9. PubMed ID: 26641659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin.
    Cole AR; Gibert M; Popoff M; Moss DS; Titball RW; Basak AK
    Nat Struct Mol Biol; 2004 Aug; 11(8):797-8. PubMed ID: 15258571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial pore-forming toxins.
    Ulhuq FR; Mariano G
    Microbiology (Reading); 2022 Mar; 168(3):. PubMed ID: 35333704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein.
    Bokori-Brown M; Martin TG; Naylor CE; Basak AK; Titball RW; Savva CG
    Nat Commun; 2016 Apr; 7():11293. PubMed ID: 27048994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single molecule atomic force microscopy of aerolysin pore complexes reveals unexpected star-shaped topography.
    He J; Wang J; Hu J; Sun J; Czajkowsky DM; Shao Z
    J Mol Recognit; 2016 Apr; 29(4):174-81. PubMed ID: 26537438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of Cry51Aa1: A potential novel insecticidal aerolysin-type β-pore-forming toxin from Bacillus thuringiensis.
    Xu C; Chinte U; Chen L; Yao Q; Meng Y; Zhou D; Bi LJ; Rose J; Adang MJ; Wang BC; Yu Z; Sun M
    Biochem Biophys Res Commun; 2015 Jul; 462(3):184-9. PubMed ID: 25957471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequence Diversity in the Pore-Forming Motifs of the Membrane-Damaging Protein Toxins.
    Mondal AK; Verma P; Lata K; Singh M; Chatterjee S; Chattopadhyay K
    J Membr Biol; 2020 Oct; 253(5):469-478. PubMed ID: 32955633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct Detection of Membrane-Inserting Fragments Defines the Translocation Pores of a Family of Pathogenic Toxins.
    Orrell KE; Tellgren-Roth Å; Di Bernardo M; Zhang Z; Cuviello F; Lundqvist J; von Heijne G; Nilsson I; Melnyk RA
    J Mol Biol; 2018 Sep; 430(18 Pt B):3190-3199. PubMed ID: 29990469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single molecule compression reveals intra-protein forces drive cytotoxin pore formation.
    Czajkowsky DM; Sun J; Shao Z
    Elife; 2015 Dec; 4():e08421. PubMed ID: 26652734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The human cancer cell active toxin Cry41Aa from
    Krishnan V; Domanska B; Elhigazi A; Afolabi F; West MJ; Crickmore N
    Biochem J; 2017 Apr; 474(10):1591-1602. PubMed ID: 28341807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient isolation of Pseudomonas aeruginosa type III secretion translocators and assembly of heteromeric transmembrane pores in model membranes.
    Romano FB; Rossi KC; Savva CG; Holzenburg A; Clerico EM; Heuck AP
    Biochemistry; 2011 Aug; 50(33):7117-31. PubMed ID: 21770428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism.
    Mueller M; Grauschopf U; Maier T; Glockshuber R; Ban N
    Nature; 2009 Jun; 459(7247):726-30. PubMed ID: 19421192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.