These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30010556)

  • 1. Lag-One Coherence as a Metric for Ultrasonic Image Quality.
    Long W; Bottenus N; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1768-1780. PubMed ID: 30010556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incoherent Clutter Suppression Using Lag-One Coherence.
    Long W; Bottenus N; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Aug; 67(8):1544-1557. PubMed ID: 32142428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occult Regions of Suppressed Coherence in Liver B-Mode Images.
    Offerdahl K; Huber M; Long W; Bottenus N; Nelson R; Trahey G
    Ultrasound Med Biol; 2022 Jan; 48(1):47-58. PubMed ID: 34702640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverberation Noise Suppression in Ultrasound Channel Signals Using a 3D Fully Convolutional Neural Network.
    Brickson LL; Hyun D; Jakovljevic M; Dahl JJ
    IEEE Trans Med Imaging; 2021 Apr; 40(4):1184-1195. PubMed ID: 33400649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-lag spatial coherence of backscattered echoes: imaging characteristics.
    Lediju MA; Trahey GE; Byram BC; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1377-88. PubMed ID: 21768022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal Coherence to Quantify Sources of Image Degradation in Ultrasonic Imaging.
    Vienneau EP; Ozgun KA; Byram BC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1337-1352. PubMed ID: 35175919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The benefits of compression methods in acoustic coherence tomography.
    Rouyer J; Mensah S; Vasseur C; Lasaygues P
    Ultrason Imaging; 2015 Jul; 37(3):205-23. PubMed ID: 25270352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study based on image quality and clinical task performance for CT reconstruction algorithms in radiotherapy.
    Li H; Dolly S; Chen HC; Anastasio MA; Low DA; Li HH; Michalski JM; Thorstad WL; Gay H; Mutic S
    J Appl Clin Med Phys; 2016 Jul; 17(4):377-390. PubMed ID: 27455472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study.
    van Ommen F; Bennink E; Vlassenbroek A; Dankbaar JW; Schilham AMR; Viergever MA; de Jong HWAM
    Med Phys; 2018 Jul; 45(7):3031-3042. PubMed ID: 29749624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo application of short-lag spatial coherence imaging in human liver.
    Jakovljevic M; Trahey GE; Nelson RC; Dahl JJ
    Ultrasound Med Biol; 2013 Mar; 39(3):534-42. PubMed ID: 23347642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo application of short-lag spatial coherence and harmonic spatial coherence imaging in fetal ultrasound.
    Kakkad V; Dahl J; Ellestad S; Trahey G
    Ultrason Imaging; 2015 Apr; 37(2):101-16. PubMed ID: 25116292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions.
    Brunner CC; Stern SH; Minniti R; Parry MI; Skopec M; Chakrabarti K
    Med Phys; 2013 Aug; 40(8):081917. PubMed ID: 23927331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Short-Lag Spatial Coherence Imaging.
    Nair AA; Tran TD; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Mar; 65(3):366-377. PubMed ID: 29505405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Converting Coherence to Signal-to-noise Ratio for Enhancement of Adaptive Ultrasound Imaging.
    Hasegawa H; Nagaoka R
    Ultrason Imaging; 2020 Jan; 42(1):27-40. PubMed ID: 31802696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-lag Spatial Coherence Ultrasound Imaging with Adaptive Synthetic Transmit Aperture Focusing.
    Zhao J; Wang Y; Yu J; Guo W; Zhang S; Aliabadi S
    Ultrason Imaging; 2017 Jul; 39(4):224-239. PubMed ID: 28068874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolution and brightness characteristics of short-lag spatial coherence (SLSC) images.
    Lediju Bell MA; Dahl JJ; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1265-76. PubMed ID: 26168173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Automated ALARA Method for Ultrasound: An Obstetric Ultrasound Feasibility Study.
    Flint K; Bottenus N; Bradway D; McNally P; Ellestad S; Trahey G
    J Ultrasound Med; 2020 Dec; ():. PubMed ID: 33289152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.
    Dahl JJ; Hyun D; Lediju M; Trahey GE
    Ultrason Imaging; 2011 Apr; 33(2):119-33. PubMed ID: 21710827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial phantom study comparing image quality in computed tomography using adaptive statistical iterative reconstruction and new adaptive statistical iterative reconstruction v.
    Lim K; Kwon H; Cho J; Oh J; Yoon S; Kang M; Ha D; Lee J; Kang E
    J Comput Assist Tomogr; 2015; 39(3):443-8. PubMed ID: 25654782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image quality comparison between single energy and dual energy CT protocols for hepatic imaging.
    Yao Y; Ng JM; Megibow AJ; Pelc NJ
    Med Phys; 2016 Aug; 43(8):4877. PubMed ID: 27487905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.