These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30010600)

  • 41. A Miniaturized 256-Channel Neural Recording Interface With Area-Efficient Hybrid Integration of Flexible Probes and CMOS Integrated Circuits.
    Park SY; Na K; Voroslakos M; Song H; Slager N; Oh S; Seymour J; Buzsaki G; Yoon E
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):334-346. PubMed ID: 34191721
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode.
    Libbrecht S; Hoffman L; Welkenhuysen M; Van den Haute C; Baekelandt V; Braeken D; Haesler S
    J Neurophysiol; 2018 Jul; 120(1):149-161. PubMed ID: 29589813
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A CMOS Neural Interface for a Multichannel Vestibular Prosthesis.
    Hageman KN; Kalayjian ZK; Tejada F; Chiang B; Rahman MA; Fridman GY; Dai C; Pouliquen PO; Georgiou J; Della Santina CC; Andreou AG
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):269-79. PubMed ID: 25974945
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inkjet-Printed Quantum Dot Color Conversion Films for High-Resolution and Full-Color Micro Light-Emitting Diode Displays.
    Xuan T; Shi S; Wang L; Kuo HC; Xie RJ
    J Phys Chem Lett; 2020 Jul; 11(13):5184-5191. PubMed ID: 32531168
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Fully Implantable Opto-Electro Closed-Loop Neural Interface for Motor Neuron Disease Studies.
    Liu F; Wu Y; Almarri N; Habibollahi M; Lancashire HT; Bryson B; Greensmith L; Jiang D; Demosthenous A
    IEEE Trans Biomed Circuits Syst; 2022 Oct; 16(5):752-765. PubMed ID: 36018872
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fully integrated silicon probes for high-density recording of neural activity.
    Jun JJ; Steinmetz NA; Siegle JH; Denman DJ; Bauza M; Barbarits B; Lee AK; Anastassiou CA; Andrei A; Aydın Ç; Barbic M; Blanche TJ; Bonin V; Couto J; Dutta B; Gratiy SL; Gutnisky DA; Häusser M; Karsh B; Ledochowitsch P; Lopez CM; Mitelut C; Musa S; Okun M; Pachitariu M; Putzeys J; Rich PD; Rossant C; Sun WL; Svoboda K; Carandini M; Harris KD; Koch C; O'Keefe J; Harris TD
    Nature; 2017 Nov; 551(7679):232-236. PubMed ID: 29120427
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Compact Quad-Shank CMOS Neural Probe With 5,120 Addressable Recording Sites and 384 Fully Differential Parallel Channels.
    Wang S; Garakoui SK; Chun H; Salinas DG; Sijbers W; Putzeys J; Martens E; Craninckx J; Van Helleputte N; Lopez CM
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1625-1634. PubMed ID: 31545741
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The OpenPicoAmp-100k: an open-source high-performance amplifier for single channel recording in planar lipid bilayers.
    Shlyonsky V; Gall D
    Pflugers Arch; 2019 Dec; 471(11-12):1467-1480. PubMed ID: 31655878
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A 32-Channel Wireless Configurable System for Electrical Stimulation of the Stomach
    Abukhalaf Z; Javan-Khoshkholgh A; Alrofati W; Farajidavar A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4178-4181. PubMed ID: 30441276
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Highly Configurable 100 Channel Recording and Stimulating Integrated Circuit for Biomedical Experiments.
    Kmon P
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960575
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An Analog Front End ASIC for Cardiac Electrical Impedance Tomography.
    Rao A; Teng YC; Schaef C; Murphy EK; Arshad S; Halter RJ; Odame K
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):729-738. PubMed ID: 29994267
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design and measurements of 64-channel ASIC for neural signal recording.
    Kmon P; Zoladz M; Grybos P; Szczygiel R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():528-31. PubMed ID: 19964226
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simultaneous electrophysiology and optogenetic perturbation of the same neurons in chronically implanted animals using μLED silicon probes.
    Kinsky NR; Vöröslakos M; Lopez Ruiz JR; Watkins de Jong L; Slager N; McKenzie S; Yoon E; Diba K
    STAR Protoc; 2023 Dec; 4(4):102570. PubMed ID: 37729059
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Wireless Electro-Optic Headstage With a 0.13- μm CMOS Custom Integrated DWT Neural Signal Decoder for Closed-Loop Optogenetics.
    Gagnon-Turcotte G; Keramidis I; Ethier C; De Koninck Y; Gosselin B
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):1036-1051. PubMed ID: 31352352
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems.
    Dey S; Lewellen TK; Miyaoka RS; Rudell JC
    IEEE Nucl Sci Symp Conf Rec (1997); 2012; ():3556-3559. PubMed ID: 24301987
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Synchronous Neural Recording Platform for Multiple High-Resolution CMOS Probes and Passive Electrode Arrays.
    Angotzi GN; Malerba M; Boi F; Miele E; Maccione A; Amin H; Crepaldi M; Berdondini L
    IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):532-542. PubMed ID: 29877817
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neurochip3: An Autonomous Multichannel Bidirectional Brain-Computer Interface for Closed-Loop Activity-Dependent Stimulation.
    Shupe LE; Miles FP; Jones G; Yun R; Mishler J; Rembado I; Murphy RL; Perlmutter SI; Fetz EE
    Front Neurosci; 2021; 15():718465. PubMed ID: 34489634
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes.
    Kampasi K; English DF; Seymour J; Stark E; McKenzie S; Vöröslakos M; Buzsáki G; Wise KD; Yoon E
    Microsyst Nanoeng; 2018; 4():. PubMed ID: 30766759
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A 96-channel neural stimulation system for driving AIROF microelectrodes.
    Hu Z; Troyk P; Cogan S
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4244-7. PubMed ID: 17271241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.