These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30010640)

  • 1. Implantation of Electrospun Vascular Grafts with Optimized Structure in a Rat Model.
    Qin K; Wu Y; Pan Y; Wang K; Kong D; Zhao Q
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 30010640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration.
    Wang Z; Cui Y; Wang J; Yang X; Wu Y; Wang K; Gao X; Li D; Li Y; Zheng XL; Zhu Y; Kong D; Zhao Q
    Biomaterials; 2014 Jul; 35(22):5700-10. PubMed ID: 24746961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of remodeling and regeneration of electrospun PCL/fibrin vascular grafts in vivo.
    Zhao L; Li X; Yang L; Sun L; Mu S; Zong H; Li Q; Wang F; Song S; Yang C; Zhao C; Chen H; Zhang R; Wang S; Dong Y; Zhang Q
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111441. PubMed ID: 33255034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid electrospun rapamycin-loaded small-diameter decellularized vascular grafts effectively inhibit intimal hyperplasia.
    Yang Y; Lei D; Zou H; Huang S; Yang Q; Li S; Qing FL; Ye X; You Z; Zhao Q
    Acta Biomater; 2019 Oct; 97():321-332. PubMed ID: 31523025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The regeneration of macro-porous electrospun poly(ɛ-caprolactone) vascular graft during long-term in situ implantation.
    Wu Y; Qin Y; Wang Z; Wang J; Zhang C; Li C; Kong D
    J Biomed Mater Res B Appl Biomater; 2018 May; 106(4):1618-1627. PubMed ID: 28834076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term evaluation of vascular grafts with circumferentially aligned microfibers in a rat abdominal aorta replacement model.
    Li W; Chen J; Xu P; Zhu M; Wu Y; Wang Z; Zhao T; Cheng Q; Wang K; Fan G; Zhu Y; Kong D
    J Biomed Mater Res B Appl Biomater; 2018 Oct; 106(7):2596-2604. PubMed ID: 29412507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a decellularized human amniotic membrane-based electrospun vascular graft capable of rapid remodeling for small-diameter vascular applications.
    Liu J; Chen D; Zhu X; Liu N; Zhang H; Tang R; Liu Z
    Acta Biomater; 2022 Oct; 152():144-156. PubMed ID: 36108966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thick PCL Fibers Improving Host Remodeling of PGS-PCL Composite Grafts Implanted in Rat Common Carotid Arteries.
    Fu J; Wang M; De Vlaminck I; Wang Y
    Small; 2020 Dec; 16(52):e2004133. PubMed ID: 33251720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(L-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(L-lactic acid) graft in a mouse aortic implantation model.
    Tara S; Kurobe H; Rocco KA; Maxfield MW; Best CA; Yi T; Naito Y; Breuer CK; Shinoka T
    Atherosclerosis; 2014 Dec; 237(2):684-91. PubMed ID: 25463106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quercetin improves rapid endothelialization and inflammatory microenvironment in electrospun vascular grafts.
    Gui Y; Qin K; Zhang Y; Bian X; Wang Z; Han D; Peng Y; Yan H; Gao Z
    Biomed Mater; 2022 Sep; 17(6):. PubMed ID: 36108624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun small-diameter polyurethane vascular grafts: ingrowth and differentiation of vascular-specific host cells.
    Bergmeister H; Grasl C; Walter I; Plasenzotti R; Stoiber M; Schreiber C; Losert U; Weigel G; Schima H
    Artif Organs; 2012 Jan; 36(1):54-61. PubMed ID: 21848935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of hypoxia-mimicking responses on improving the regeneration of artificial vascular grafts.
    Rafique M; Wei T; Sun Q; Midgley AC; Huang Z; Wang T; Shafiq M; Zhi D; Si J; Yan H; Kong D; Wang K
    Biomaterials; 2021 Apr; 271():120746. PubMed ID: 33725586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia.
    Wei Y; Wu Y; Zhao R; Zhang K; Midgley AC; Kong D; Li Z; Zhao Q
    Biomaterials; 2019 Jun; 204():13-24. PubMed ID: 30875515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro and in vivo evaluation of a small-caliber coaxial electrospun vascular graft loaded with heparin and VEGF.
    Hu YT; Pan XD; Zheng J; Ma WG; Sun LZ
    Int J Surg; 2017 Aug; 44():244-249. PubMed ID: 28648794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular Remodeling Process of Heparin-Conjugated Poly(ε-Caprolactone) Scaffold in a Rat Abdominal Aorta Replacement Model.
    Xu Z; Gu Y; Li J; Feng Z; Guo L; Tong Z; Ye L; Wang C; Wang R; Geng X; Wang C; Zhang J
    J Vasc Res; 2018; 55(6):338-349. PubMed ID: 30485863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peritoneal pre-conditioning impacts long-term vascular graft patency and remodeling.
    Sameti M; Shojaee M; Saleh BM; Moore LK; Bashur CA
    Biomater Adv; 2023 May; 148():213386. PubMed ID: 36948108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of endothelialization in the center part of graft using 3 cm vascular grafts implanted in the abdominal aortae of the rat.
    Fukayama T; Ozai Y; Shimokawatoko H; Kimura Y; Aytemiz D; Tanaka R; Machida N; Asakura T
    J Artif Organs; 2017 Sep; 20(3):221-229. PubMed ID: 28500497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model.
    Zheng W; Wang Z; Song L; Zhao Q; Zhang J; Li D; Wang S; Han J; Zheng XL; Yang Z; Kong D
    Biomaterials; 2012 Apr; 33(10):2880-91. PubMed ID: 22244694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small-diameter hybrid vascular grafts composed of polycaprolactone and polydioxanone fibers.
    Pan Y; Zhou X; Wei Y; Zhang Q; Wang T; Zhu M; Li W; Huang R; Liu R; Chen J; Fan G; Wang K; Kong D; Zhao Q
    Sci Rep; 2017 Jun; 7(1):3615. PubMed ID: 28620160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid small-diameter vascular grafts: Anti-expansion effect of electrospun poly ε-caprolactone on heparin-coated decellularized matrices.
    Gong W; Lei D; Li S; Huang P; Qi Q; Sun Y; Zhang Y; Wang Z; You Z; Ye X; Zhao Q
    Biomaterials; 2016 Jan; 76():359-70. PubMed ID: 26561933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.