BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 30010644)

  • 1. Bioprintable Alginate/Gelatin Hydrogel 3D In Vitro Model Systems Induce Cell Spheroid Formation.
    Jiang T; Munguia-Lopez J; Flores-Torres S; Grant J; Vijayakumar S; De Leon-Rodriguez A; Kinsella JM
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30010644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics.
    Jiang T; Munguia-Lopez JG; Gu K; Bavoux MM; Flores-Torres S; Kort-Mascort J; Grant J; Vijayakumar S; De Leon-Rodriguez A; Ehrlicher AJ; Kinsella JM
    Biofabrication; 2019 Dec; 12(1):015024. PubMed ID: 31404917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility.
    Dai X; Ma C; Lan Q; Xu T
    Biofabrication; 2016 Oct; 8(4):045005. PubMed ID: 27725343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels.
    Duan B; Hockaday LA; Kang KH; Butcher JT
    J Biomed Mater Res A; 2013 May; 101(5):1255-64. PubMed ID: 23015540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and printability of Sodium alginate -Gelatin hydrogel for bioprinting NSCLC co-culture.
    Mondal A; Gebeyehu A; Miranda M; Bahadur D; Patel N; Ramakrishnan S; Rishi AK; Singh M
    Sci Rep; 2019 Dec; 9(1):19914. PubMed ID: 31882581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directing the Self-assembly of Tumour Spheroids by Bioprinting Cellular Heterogeneous Models within Alginate/Gelatin Hydrogels.
    Jiang T; Munguia-Lopez JG; Flores-Torres S; Grant J; Vijayakumar S; Leon-Rodriguez A; Kinsella JM
    Sci Rep; 2017 Jul; 7(1):4575. PubMed ID: 28676662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels.
    Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG
    Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alginate-gelatin-Matrigel hydrogels enable the development and multigenerational passaging of patient-derived 3D bioprinted cancer spheroid models.
    Flores-Torres S; Peza-Chavez O; Kuasne H; Munguia-Lopez JG; Kort-Mascort J; Ferri L; Jiang T; Rajadurai CV; Park M; Sangwan V; Kinsella JM
    Biofabrication; 2021 Mar; 13(2):. PubMed ID: 33440351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting.
    Kim MH; Lee YW; Jung WK; Oh J; Nam SY
    J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures.
    Tabriz AG; Hermida MA; Leslie NR; Shu W
    Biofabrication; 2015 Dec; 7(4):045012. PubMed ID: 26689257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of fluid-phase 3D printing to pattern alginate-gelatin hydrogel properties to guide cell growth and behaviour
    Souza A; Kevin M; Rodriguez BJ; Reynaud EG
    Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38810635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional printing of cell-laden microporous constructs using blended bioinks.
    Somasekhar L; Huynh ND; Vecheck A; Kishore V; Bashur CA; Mitra K
    J Biomed Mater Res A; 2022 Mar; 110(3):535-546. PubMed ID: 34486214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Interpenetrating Alginate/Gelatin Network for Three-Dimensional (3D) Cell Cultures and Organ Bioprinting.
    Chen Q; Tian X; Fan J; Tong H; Ao Q; Wang X
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32050529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells.
    Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG
    Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D bioprinting of a gelatin-alginate hydrogel for tissue-engineered hair follicle regeneration.
    Kang D; Liu Z; Qian C; Huang J; Zhou Y; Mao X; Qu Q; Liu B; Wang J; Hu Z; Miao Y
    Acta Biomater; 2023 Jul; 165():19-30. PubMed ID: 35288311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation.
    Shang W; Liu Y; Wan W; Hu C; Liu Z; Wong CT; Fukuda T; Shen Y
    Biofabrication; 2017 Jun; 9(2):025032. PubMed ID: 28436920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.
    Wu Z; Su X; Xu Y; Kong B; Sun W; Mi S
    Sci Rep; 2016 Apr; 6():24474. PubMed ID: 27091175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.