These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 300107)

  • 21. A long-lasting birefringence change recorded from a tetanically stimulated squid giant axon.
    Watanabe A; Terakawa S
    J Neurobiol; 1976 May; 7(3):271-86. PubMed ID: 1271058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative studies on the polarization optical properties of living cells. I. Microphotometric birefringence detection system.
    Hiramoto Y; Hamaguchi Y; ShĂ´ji Y; Shimoda S
    J Cell Biol; 1981 Apr; 89(1):115-20. PubMed ID: 7228896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous measurements of ionic currents, tension and optical properties of voltage clamped skeletal muscle fibres.
    Poledna J; Lacinová L
    Gen Physiol Biophys; 1988 Feb; 7(1):17-28. PubMed ID: 2456248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of diethyl-stilboestrol on single fibres of frog skeletal muscle.
    Khan AR
    Acta Physiol Scand; 1979 May; 106(1):69-73. PubMed ID: 313661
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A-band length, striation spacing and tension change on stretch of active muscle.
    Hill L
    J Physiol; 1977 Apr; 266(3):677-85. PubMed ID: 301188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres.
    Edman KA
    J Physiol; 1979 Jun; 291():143-59. PubMed ID: 314510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simple multi-wavelength imaging of birefringence:case study of silk.
    Honda R; Ryu M; Li JL; Mizeikis V; Juodkazis S; Morikawa J
    Sci Rep; 2018 Dec; 8(1):17652. PubMed ID: 30518779
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Birefringence signals and calcium transients in skeletal muscle.
    Suarez-Kurtz G; Parker I
    Nature; 1977 Dec 22-29; 270(5639):746-8. PubMed ID: 413060
    [No Abstract]   [Full Text] [Related]  

  • 29. The optical spike. Structure of the olfactory nerve of pike and rapid birefringence changes during excitation.
    Muralt A; Weibel ER; Howarth JV
    Pflugers Arch; 1976 Nov; 367(1):67-76. PubMed ID: 1034287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical rotation signals recorded from a single skeletal muscle fibre of a frog.
    Tsuboi T; Watanabe A
    J Muscle Res Cell Motil; 1998 Jun; 19(5):505-13. PubMed ID: 9682137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1992 Nov; 457():655-73. PubMed ID: 1297847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Birefringence changes in vertebrate striated muscle.
    Taylor DL
    J Supramol Struct; 1975; 3(2):181-91. PubMed ID: 172736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in axon birefringence during the action potential.
    Cohen LB; Hille B; Keynes RD
    J Physiol; 1970 Dec; 211(2):495-515. PubMed ID: 5501012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Local development of action potentials in slow muscle fibres after complete or partial denervation.
    Schalow G; Schmidt H
    Proc R Soc Lond B Biol Sci; 1979 Jan; 203(1153):445-57. PubMed ID: 34164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle.
    Chandler WK; Rakowski RF; Schneider MF
    J Physiol; 1976 Jan; 254(2):285-316. PubMed ID: 1082507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intersarcomere dynamics during fixed-end tetanic contractions of frog muscle fibres.
    Julian FJ; Morgan DL
    J Physiol; 1979 Aug; 293():365-78. PubMed ID: 315464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence intensity changes associated with contractile activation in frog muscle stained with Nile Blue A.
    Bezanilla F; Horowicz P
    J Physiol; 1975 Apr; 246(3):709-35. PubMed ID: 1079536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the contraction of an organelle using its birefringency: the R-fibre of the Ceratium (Dinoflagellate) flagellum.
    Sato H; Greuet C; Cachon M; Cosson J
    Cell Biol Int; 2004; 28(5):387-96. PubMed ID: 15193282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Resting potential and action potential of an individual frog muscle fiber during reciprocal inhibition].
    Pshedetskaia AD
    Fiziol Zh SSSR Im I M Sechenova; 1978 Jan; 64(1):26-30. PubMed ID: 304423
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Action potentials in slow muscle fibres of the frog during regeneration of motor nerves.
    Schmidt H; Stefani E
    J Physiol; 1977 Sep; 270(2):507-17. PubMed ID: 302858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.