BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30010718)

  • 1. A parallel computational framework for ultra-large-scale sequence clustering analysis.
    Zheng W; Mao Q; Genco RJ; Wactawski-Wende J; Buck M; Cai Y; Sun Y
    Bioinformatics; 2019 Feb; 35(3):380-388. PubMed ID: 30010718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ESPRIT-Forest: Parallel clustering of massive amplicon sequence data in subquadratic time.
    Cai Y; Zheng W; Yao J; Yang Y; Mai V; Mao Q; Sun Y
    PLoS Comput Biol; 2017 Apr; 13(4):e1005518. PubMed ID: 28437450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SENSE: Siamese neural network for sequence embedding and alignment-free comparison.
    Zheng W; Yang L; Genco RJ; Wactawski-Wende J; Buck M; Sun Y
    Bioinformatics; 2019 Jun; 35(11):1820-1828. PubMed ID: 30346493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CLUSTOM-CLOUD: In-Memory Data Grid-Based Software for Clustering 16S rRNA Sequence Data in the Cloud Environment.
    Oh J; Choi CH; Park MK; Kim BK; Hwang K; Lee SH; Hong SG; Nasir A; Cho WS; Kim KM
    PLoS One; 2016; 11(3):e0151064. PubMed ID: 26954507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-learning approach to identifying cancer subtypes using high-dimensional genomic data.
    Chen R; Yang L; Goodison S; Sun Y
    Bioinformatics; 2020 Mar; 36(5):1476-1483. PubMed ID: 31603461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SpaRC: scalable sequence clustering using Apache Spark.
    Shi L; Meng X; Tseng E; Mascagni M; Wang Z
    Bioinformatics; 2019 Mar; 35(5):760-768. PubMed ID: 30816928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences.
    Rideout JR; He Y; Navas-Molina JA; Walters WA; Ursell LK; Gibbons SM; Chase J; McDonald D; Gonzalez A; Robbins-Pianka A; Clemente JC; Gilbert JA; Huse SM; Zhou HW; Knight R; Caporaso JG
    PeerJ; 2014; 2():e545. PubMed ID: 25177538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing large scale genomic data on the cloud with Sparkhit.
    Huang L; Krüger J; Sczyrba A
    Bioinformatics; 2018 May; 34(9):1457-1465. PubMed ID: 29253074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical analysis of state-of-the-art metagenomics OTU clustering algorithms.
    Bhat AH; Prabhu P; Balakrishnan K
    J Biosci; 2019 Dec; 44(6):. PubMed ID: 31894129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DACE: a scalable DP-means algorithm for clustering extremely large sequence data.
    Jiang L; Dong Y; Chen N; Chen T
    Bioinformatics; 2017 Mar; 33(6):834-842. PubMed ID: 28025198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A modified hyperplane clustering algorithm allows for efficient and accurate clustering of extremely large datasets.
    Sharma A; Podolsky R; Zhao J; McIndoe RA
    Bioinformatics; 2009 May; 25(9):1152-7. PubMed ID: 19261720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MSClust: A Multi-Seeds based Clustering algorithm for microbiome profiling using 16S rRNA sequence.
    Chen W; Cheng Y; Zhang C; Zhang S; Zhao H
    J Microbiol Methods; 2013 Sep; 94(3):347-55. PubMed ID: 23899776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large scale microbiome profiling in the cloud.
    Valdes C; Stebliankin V; Narasimhan G
    Bioinformatics; 2019 Jul; 35(14):i13-i22. PubMed ID: 31510682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PPPCT: Privacy-Preserving framework for Parallel Clustering Transcriptomics data.
    Tadi AA; Alhadidi D; Rueda L
    Comput Biol Med; 2024 May; 173():108351. PubMed ID: 38520921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient clustering of long-read transcriptomic data with GeLuster.
    Ma J; Zhao X; Qi E; Han R; Yu T; Li G
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38310330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DBH: A de Bruijn graph-based heuristic method for clustering large-scale 16S rRNA sequences into OTUs.
    Wei ZG; Zhang SW
    J Theor Biol; 2017 Jul; 425():80-87. PubMed ID: 28454900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QuasiSeq: profiling viral quasispecies via self-tuning spectral clustering with PacBio long sequencing reads.
    Jiao X; Imamichi H; Sherman BT; Nahar R; Dewar RL; Lane HC; Imamichi T; Chang W
    Bioinformatics; 2022 Jun; 38(12):3192-3199. PubMed ID: 35532087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biospark: scalable analysis of large numerical datasets from biological simulations and experiments using Hadoop and Spark.
    Klein M; Sharma R; Bohrer CH; Avelis CM; Roberts E
    Bioinformatics; 2017 Jan; 33(2):303-305. PubMed ID: 27663493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MMseqs software suite for fast and deep clustering and searching of large protein sequence sets.
    Hauser M; Steinegger M; Söding J
    Bioinformatics; 2016 May; 32(9):1323-30. PubMed ID: 26743509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grouper: graph-based clustering and annotation for improved de novo transcriptome analysis.
    Malik L; Almodaresi F; Patro R
    Bioinformatics; 2018 Oct; 34(19):3265-3272. PubMed ID: 29746620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.