BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 3001072)

  • 21. Ubiquinol oxidation in the cytochrome bc1 complex: reaction mechanism and prevention of short-circuiting.
    Mulkidjanian AY
    Biochim Biophys Acta; 2005 Aug; 1709(1):5-34. PubMed ID: 16005845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation of the structural genes for the Rieske Fe-S protein, cytochrome b and cytochrome c1 all components of the ubiquinol: cytochrome c2 oxidoreductase complex of Rhodopseudomonas capsulata.
    Daldal F; Davidson E; Cheng S
    J Mol Biol; 1987 May; 195(1):1-12. PubMed ID: 2821266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An analogue of ubiquinone which inhibits respiration by binding to the iron-sulfur protein of the cytochrome b-c1 segment of the mitochondrial respiratory chain.
    Bowyer JR; Edwards CA; Ohnishi T; Trumpower BL
    J Biol Chem; 1982 Jul; 257(14):8321-30. PubMed ID: 6282879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel purification of cytochrome c1 from mitochondrial Complex III. Reconstitution of antimycin-insensitive electron transfer with the iron-sulfur protein and cytochrome c1.
    Shimomura Y; Nishikimi M; Ozawa T
    J Biol Chem; 1985 Dec; 260(28):15075-80. PubMed ID: 2999105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of cytochrome b in the isolated ubiquinol-cytochrome c2 oxidoreductase from Rhodopseudomonas sphaeroides GA.
    Gabellini N; Hauska G
    FEBS Lett; 1983 Mar; 153(1):146-50. PubMed ID: 6298005
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of dibromothymoquinone on the structure and function of the mitochondrial bc1 complex.
    Degli Esposti M; Rotilio G; Lenaz G
    Biochim Biophys Acta; 1984 Oct; 767(1):10-20. PubMed ID: 6091748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of flash-induced electron transfer between bacterial reaction centres, mitochondrial ubiquinol:cytochrome c oxidoreductase and cytochrome c.
    Zhu QS; Van der Wal HN; Van Grondelle R; Berden JA
    Biochim Biophys Acta; 1983 Oct; 725(1):121-30. PubMed ID: 6313049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of the c-cytochromes in chromatophores from Rhodopseudomonas sphaeroides as a function of the concentration of cytochrome c2. Influence of this concentration on the oscillation of the secondary acceptor of the reaction centers QB.
    Snozzi M; Crofts AR
    Biochim Biophys Acta; 1985 Sep; 809(2):260-70. PubMed ID: 2994721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives.
    Gu LQ; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photosynthetic membrane development in Rhodopseudomonas sphaeroides. Spectral and kinetic characterization of redox components of light-driven electron flow in apparent photosynthetic membrane growth initiation sites.
    Bowyer JR; Hunter CN; Ohnishi T; Niederman RA
    J Biol Chem; 1985 Mar; 260(6):3295-304. PubMed ID: 2982855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of pH, ubiquinone depletion and myxothiazol on the reduction kinetics of the prosthetic groups of ubiquinol:cytochrome c oxidoreductase.
    De Vries S; Albracht SP; Berden JA; Marres CA; Slater EC
    Biochim Biophys Acta; 1983 Apr; 723(1):91-103. PubMed ID: 6299337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria.
    Beattie DS; Japa S; Howton M; Zhu QS
    Arch Biochem Biophys; 1992 Feb; 292(2):499-505. PubMed ID: 1309974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional characterization of the mitochondrial cytochrome b-c1 complex: steady-state kinetics of the monomeric and dimeric forms.
    NaƂecz MJ; Azzi A
    Arch Biochem Biophys; 1985 Aug; 240(2):921-31. PubMed ID: 2992386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The nature and magnitude of the charge-separation reactions of ubiquinol cytochrome c2 oxidoreductase.
    Robertson DE; Dutton PL
    Biochim Biophys Acta; 1988 Oct; 935(3):273-91. PubMed ID: 2844257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct interaction between yeast NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and ubiquinol-cytochrome c oxidoreductase in the reduction of exogenous quinones.
    Zhu QS; Beattie DS
    J Biol Chem; 1988 Jan; 263(1):193-9. PubMed ID: 2826438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria.
    Turrens JF; Alexandre A; Lehninger AL
    Arch Biochem Biophys; 1985 Mar; 237(2):408-14. PubMed ID: 2983613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of the midpoint potential of the [2Fe-2S] Rieske iron sulfur center by Qo occupants in the bc1 complex.
    Shinkarev VP; Kolling DR; Miller TJ; Crofts AR
    Biochemistry; 2002 Dec; 41(48):14372-82. PubMed ID: 12450404
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Q-cycle mechanism for the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides.
    Crofts AR; Meinhardt SW
    Biochem Soc Trans; 1982 Aug; 10(4):201-3. PubMed ID: 6292019
    [No Abstract]   [Full Text] [Related]  

  • 39. Mutations conferring resistance to quinol oxidation (Qz) inhibitors of the cyt bc1 complex of Rhodobacter capsulatus.
    Daldal F; Tokito MK; Davidson E; Faham M
    EMBO J; 1989 Dec; 8(13):3951-61. PubMed ID: 2556259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reaction center and UQH2:cyt c2 oxidoreductase act as independent enzymes in Rps. sphaeroides.
    Crofts AR
    J Bioenerg Biomembr; 1986 Oct; 18(5):437-45. PubMed ID: 3021717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.