These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30010924)

  • 41. Functional and transcriptomic insights into pathogenesis of R9C phospholamban mutation using human induced pluripotent stem cell-derived cardiomyocytes.
    Ceholski DK; Turnbull IC; Kong CW; Koplev S; Mayourian J; Gorski PA; Stillitano F; Skodras AA; Nonnenmacher M; Cohen N; Björkegren JLM; Stroik DR; Cornea RL; Thomas DD; Li RA; Costa KD; Hajjar RJ
    J Mol Cell Cardiol; 2018 Jun; 119():147-154. PubMed ID: 29752948
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Premature Termination Codon Mutation in MYBPC3 Causes Hypertrophic Cardiomyopathy via Chronic Activation of Nonsense-Mediated Decay.
    Seeger T; Shrestha R; Lam CK; Chen C; McKeithan WL; Lau E; Wnorowski A; McMullen G; Greenhaw M; Lee J; Oikonomopoulos A; Lee S; Yang H; Mercola M; Wheeler M; Ashley EA; Yang F; Karakikes I; Wu JC
    Circulation; 2019 Feb; 139(6):799-811. PubMed ID: 30586709
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A heterozygous MYBPC3 (c. 772+1G > A) mutant human induced pluripotent stem cell line (ZZUNEUi025-A) generated from a male patient with hypertrophic cardiomyopathy.
    Zhao X; Cao J; Li X; Liu M; Liu Y; Dong J; Zhao X
    Stem Cell Res; 2022 Apr; 60():102722. PubMed ID: 35257994
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determining the Pathogenicity of a Genomic Variant of Uncertain Significance Using CRISPR/Cas9 and Human-Induced Pluripotent Stem Cells.
    Ma N; Zhang JZ; Itzhaki I; Zhang SL; Chen H; Haddad F; Kitani T; Wilson KD; Tian L; Shrestha R; Wu H; Lam CK; Sayed N; Wu JC
    Circulation; 2018 Dec; 138(23):2666-2681. PubMed ID: 29914921
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modeling human protein aggregation cardiomyopathy using murine induced pluripotent stem cells.
    Limphong P; Zhang H; Christians E; Liu Q; Riedel M; Ivey K; Cheng P; Mitzelfelt K; Taylor G; Winge D; Srivastava D; Benjamin I
    Stem Cells Transl Med; 2013 Mar; 2(3):161-6. PubMed ID: 23430692
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mitochondrial Dysfunctions Contribute to Hypertrophic Cardiomyopathy in Patient iPSC-Derived Cardiomyocytes with MT-RNR2 Mutation.
    Li S; Pan H; Tan C; Sun Y; Song Y; Zhang X; Yang W; Wang X; Li D; Dai Y; Ma Q; Xu C; Zhu X; Kang L; Fu Y; Xu X; Shu J; Zhou N; Han F; Qin D; Huang W; Liu Z; Yan Q
    Stem Cell Reports; 2018 Mar; 10(3):808-821. PubMed ID: 29456182
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Can Patient Pluripotent Stem Cell-Derived Cardiomyocytes Provide Useful Modeling on Arrhythmias of DMD Cardiomyopathy?
    Kho C
    J Am Coll Cardiol; 2020 Mar; 75(10):1175-1177. PubMed ID: 32164891
    [No Abstract]   [Full Text] [Related]  

  • 48. Cardiac arrhythmias in hypertrophic cardiomyopathy.
    Bjarnason I; Hardarson T; Jonsson S
    Br Heart J; 1982 Sep; 48(3):198-203. PubMed ID: 7201843
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generation of two heterozygous MYBPC3 mutation-carrying human iPSC lines, SCVIi001-A and SCVIi002-A, for modeling hypertrophic cardiomyopathy.
    Liu L; Shenoy SP; Jahng JWS; Liu Y; Knowles JW; Zhuge Y; Wu JC
    Stem Cell Res; 2021 May; 53():102279. PubMed ID: 33743363
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Translational investigation of electrophysiology in hypertrophic cardiomyopathy.
    Flenner F; Jungen C; Küpker N; Ibel A; Kruse M; Koivumäki JT; Rinas A; Zech ATL; Rhoden A; Wijnker PJM; Lemoine MD; Steenpass A; Girdauskas E; Eschenhagen T; Meyer C; van der Velden J; Patten-Hamel M; Christ T; Carrier L
    J Mol Cell Cardiol; 2021 Aug; 157():77-89. PubMed ID: 33957110
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Generation of an induced pluripotent stem cell line, ICGi029-A, by reprogramming peripheral blood mononuclear cells of a patient suffering from hypertrophic cardiomyopathy and carrying a heterozygous p.N515del mutation in MYBPC3.
    Dementyeva EV; Pavlova SV; Chernyavsky AM; Zakian SM
    Stem Cell Res; 2021 May; 53():102344. PubMed ID: 33892289
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pluripotent Stem Cell-Based Platforms in Cardiac Disease Modeling and Drug Testing.
    Shaheen N; Shiti A; Gepstein L
    Clin Pharmacol Ther; 2017 Aug; 102(2):203-208. PubMed ID: 28718902
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Arrhythmia Mechanisms in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.
    Paci M; Penttinen K; Pekkanen-Mattila M; Koivumäki JT
    J Cardiovasc Pharmacol; 2020 Dec; 77(3):300-316. PubMed ID: 33323698
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Generation of an induced pluripotent stem cell line (ZJULLi003-A) from a hypertrophic cardiomyopathy patient carrying MYH7/c.4384G > A mutation.
    Zhou J; Sun Y; Wang H; Wang H; Guo F; Chen X; Gong T; Jiang C; Liang P
    Stem Cell Res; 2022 Oct; 64():102883. PubMed ID: 35944310
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Abnormalities in sodium current and calcium homoeostasis as drivers of arrhythmogenesis in hypertrophic cardiomyopathy.
    Coppini R; Santini L; Olivotto I; Ackerman MJ; Cerbai E
    Cardiovasc Res; 2020 Jul; 116(9):1585-1599. PubMed ID: 32365196
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unlocking Personalized Biomedicine and Drug Discovery with Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Fit for Purpose or Forever Elusive?
    de Korte T; Katili PA; Mohd Yusof NAN; van Meer BJ; Saleem U; Burton FL; Smith GL; Clements P; Mummery CL; Eschenhagen T; Hansen A; Denning C
    Annu Rev Pharmacol Toxicol; 2020 Jan; 60():529-551. PubMed ID: 31506008
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Production of genome-edited pluripotent stem cells and mice by CRISPR/Cas.
    Horii T; Hatada I
    Endocr J; 2016; 63(3):213-9. PubMed ID: 26743444
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcriptomic Analysis of Cardiomyocyte Extracellular Vesicles in Hypertrophic Cardiomyopathy Reveals Differential snoRNA Cargo.
    James V; Nizamudeen ZA; Lea D; Dottorini T; Holmes TL; Johnson BB; Arkill KP; Denning C; Smith JGW
    Stem Cells Dev; 2021 Dec; 30(24):1215-1227. PubMed ID: 34806414
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CRISPRing the hypertrophic cardiomyopathy: correcting one pathogenic variant at a time.
    Afzal J; Kshitiz
    Signal Transduct Target Ther; 2023 Jun; 8(1):254. PubMed ID: 37365168
    [No Abstract]   [Full Text] [Related]  

  • 60. Developmental origins of hypertrophic cardiomyopathy phenotypes: a unifying hypothesis.
    Olivotto I; Cecchi F; Poggesi C; Yacoub MH
    Nat Rev Cardiol; 2009 Apr; 6(4):317-21. PubMed ID: 19352336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.