These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30011427)

  • 1. Flexoelectro-optic effect and two-beam energy exchange in a hybrid photorefractive cholesteric cell with a short-pitch horizontal helix.
    Reshetnyak VY; Pinkevych IP; Evans DR
    Phys Rev E; 2018 Jun; 97(6-1):062701. PubMed ID: 30011427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-beam energy exchange in a hybrid photorefractive-flexoelectric liquid-crystal cell.
    Reshetnyak VY; Pinkevych IP; Cook G; Evans DR; Sluckin TJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031705. PubMed ID: 20365749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of photoisomerization of azobenzene dopants on the flexoelectric properties of short-pitch cholesteric liquid crystals.
    Komitov L; Ruslim C; Ichimura K
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):5379-84. PubMed ID: 11031588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant Flexoelectro-optic Effect with Liquid Crystal Dimer CB7CB.
    Varanytsia A; Chien LC
    Sci Rep; 2017 Jan; 7():41333. PubMed ID: 28117429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration.
    Castles F; Morris SM; Coles HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031709. PubMed ID: 19905133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals.
    Lin CH; Chiang RH; Liu SH; Kuo CT; Huang CY
    Opt Express; 2012 Nov; 20(24):26837-44. PubMed ID: 23187537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of surface-potential-mediated photorefractivelike effects in liquid crystals.
    Kubytskyi VO; Reshetnyak VY; Sluckin TJ; Cox SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011703. PubMed ID: 19257048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexoelectro-optic liquid crystal analog phase-only modulator with a 2π range and 1  kHz switching.
    Fells JAJ; Wang X; Elston SJ; Welch C; Mehl GH; Booth MJ; Morris SM
    Opt Lett; 2018 Sep; 43(18):4362-4365. PubMed ID: 30211871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring.
    Gvozdovskyy I; Yaroshchuk O; Serbina M; Yamaguchi R
    Opt Express; 2012 Feb; 20(4):3499-508. PubMed ID: 22418109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of high gain in a liquid-crystal panel with photoconducting polymeric layers.
    Bartkiewicz S; Miniewicz A; Kajzar FO; Zagórska M
    Appl Opt; 1998 Oct; 37(29):6871-7. PubMed ID: 18301503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-induced pitch transitions in photosensitive cholesteric liquid crystals: effects of anchoring energy.
    Orlova TN; Iegorov RI; Kiselev AD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012503. PubMed ID: 24580242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-short helix pitch and spiral ordering in cholesteric liquid crystal revealed by resonant soft X-ray scattering.
    Smekhova A; Novotná V; Fekete L; Abrudan R; Fondell M; Hamplová V; Ostrovskii BI
    Soft Matter; 2021 Dec; 18(1):89-96. PubMed ID: 34870645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesteric Flakes in Motion Driven by the Elastic Force from Nematic Liquid Crystals.
    Liu W; Zhou Y; Liu S; Shao W; Broer DJ; Zhou G; Yuan D; Liu D
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40916-40922. PubMed ID: 31597426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent beam amplification with a photorefractive liquid crystal.
    Khoo IC; Guenther BD; Wood MV; Chen P; Shih MY
    Opt Lett; 1997 Aug; 22(16):1229-31. PubMed ID: 18185803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-plane switching of cholesteric liquid crystals for visible and near-infrared applications.
    Xianyu H; Faris S; Crawford GP
    Appl Opt; 2004 Sep; 43(26):5006-15. PubMed ID: 15468701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong beam coupling in mesogenic materials with photorefractive Bragg gratings.
    Ono H; Kawatsuki N
    Opt Lett; 1999 Feb; 24(3):130-2. PubMed ID: 18071430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A photorefractive organically modified silica glass with high optical gain.
    Cheben P; del Monte F; Worsfold DJ; Carlsson DJ; Grover CP; Mackenzie JD
    Nature; 2000 Nov; 408(6808):64-7. PubMed ID: 11081505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesteric elastomers in external mechanical and electric fields.
    Menzel AM; Brand HR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011707. PubMed ID: 17358173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Driven Rotation and Pitch Tuning of Self-Organized Cholesteric Gratings Formed in a Semi-Free Film.
    Ma LL; Duan W; Tang MJ; Chen LJ; Liang X; Lu YQ; Hu W
    Polymers (Basel); 2017 Jul; 9(7):. PubMed ID: 30970973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-domain analysis of optically controllable biphotonic gratings in azo-dye-doped cholesteric liquid crystals.
    Yeh HC
    Opt Express; 2011 Mar; 19(6):5500-10. PubMed ID: 21445188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.