These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30011490)

  • 1. Wetting dynamics in two-liquid systems: Effect of the surrounding phase viscosity.
    Bazazi P; Sanati-Nezhad A; Hejazi SH
    Phys Rev E; 2018 Jun; 97(6-1):063104. PubMed ID: 30011490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Early Regime of Drop Spreading.
    Mitra S; Mitra SK
    Langmuir; 2016 Sep; 32(35):8843-8. PubMed ID: 27513708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
    Chen L; Bonaccurso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive spreading versus imbibition of polymer liquid drops in nanoporous membranes: scaling behavior with viscosity.
    Haidara H; Lebeau B; Grzelakowski C; Vonna L; Biguenet F; Vidal L
    Langmuir; 2008 Apr; 24(8):4209-14. PubMed ID: 18302434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Unveiling the Anomalies Associated with the Spontaneous Spreading of Droplets.
    Debnath D; Kumar P; Mitra SK
    Langmuir; 2021 Dec; 37(51):14833-14845. PubMed ID: 34904828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-time dynamics of partial wetting.
    Bird JC; Mandre S; Stone HA
    Phys Rev Lett; 2008 Jun; 100(23):234501. PubMed ID: 18643505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental contribution to the understanding of the dynamics of spreading of Newtonian fluids: effect of volume, viscosity and surfactant.
    Roques-Carmes T; Mathieu V; Gigante A
    J Colloid Interface Sci; 2010 Apr; 344(1):180-97. PubMed ID: 20089256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio.
    Kim JH; Rothstein JP
    Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can we predict the spreading of a two-liquid system from the spreading of the corresponding liquid-air systems?
    Goossens S; Seveno D; Rioboo R; Vaillant A; Conti J; De Coninck J
    Langmuir; 2011 Aug; 27(16):9866-72. PubMed ID: 21682265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spreading of completely wetting or partially wetting power-law fluid on solid surface.
    Wang XD; Zhang Y; Lee DJ; Peng XF
    Langmuir; 2007 Aug; 23(18):9258-62. PubMed ID: 17676773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting dynamics on superhydrophilic surfaces prepared by photonic microfolding.
    Bahners T; Prager L; Gutmann JS
    Langmuir; 2014 Mar; 30(11):3127-31. PubMed ID: 24628481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spreading law of non-Newtonian power-law liquids on a spherical substrate by an energy-balance approach.
    Iwamatsu M
    Phys Rev E; 2017 Jul; 96(1-1):012803. PubMed ID: 29347224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces.
    Lee JB; Derome D; Guyer R; Carmeliet J
    Langmuir; 2016 Feb; 32(5):1299-308. PubMed ID: 26743317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial spreading of low-viscosity drops on partially wetting surfaces.
    Winkels KG; Weijs JH; Eddi A; Snoeijer JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):055301. PubMed ID: 23004813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet spreading driven by van der Waals force: a molecular dynamics study.
    Wu C; Qian T; Sheng P
    J Phys Condens Matter; 2010 Aug; 22(32):325101. PubMed ID: 21386483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond Tanner's law: crossover between spreading regimes of a viscous droplet on an identical film.
    Cormier SL; McGraw JD; Salez T; Raphaƫl E; Dalnoki-Veress K
    Phys Rev Lett; 2012 Oct; 109(15):154501. PubMed ID: 23102314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spreading and retraction as a function of drop size.
    Ghosh M; Stebe KJ
    Adv Colloid Interface Sci; 2010 Dec; 161(1-2):61-76. PubMed ID: 20817136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spreading dynamics of a precursor film of nanodrops on total wetting surfaces.
    Weng YH; Wu CJ; Tsao HK; Sheng YJ
    Phys Chem Chem Phys; 2017 Oct; 19(40):27786-27794. PubMed ID: 28990037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.