These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30011515)

  • 1. Hierarchical block model for earthquakes.
    Mykulyak SV
    Phys Rev E; 2018 Jun; 97(6-1):062130. PubMed ID: 30011515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion of epicenters of earthquake aftershocks, Omori's law, and generalized continuous-time random walk models.
    Helmstetter A; Sornette D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061104. PubMed ID: 12513267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous power law distribution of total lifetimes of branching processes: application to earthquake aftershock sequences.
    Saichev A; Sornette D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046123. PubMed ID: 15600476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unified scaling law for earthquakes.
    Bak P; Christensen K; Danon L; Scanlon T
    Phys Rev Lett; 2002 Apr; 88(17):178501. PubMed ID: 12005787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aftershocks in a frictional earthquake model.
    Braun OM; Tosatti E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032403. PubMed ID: 25314453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Possibility of Reproducing Utsu's Law for Earthquakes with a Spring-Block SOC Model.
    Salinas-Martínez A; Perez-Oregon J; Aguilar-Molina AM; Muñoz-Diosdado A; Angulo-Brown F
    Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unified scaling law for earthquakes.
    Christensen K; Danon L; Scanlon T; Bak P
    Proc Natl Acad Sci U S A; 2002 Feb; 99 Suppl 1(Suppl 1):2509-13. PubMed ID: 11875203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monofractal and multifractal analysis of the spatial distribution of earthquakes in the central zone of Chile.
    Pastén D; Muñoz V; Cisternas A; Rogan J; Valdivia JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066123. PubMed ID: 22304171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analogies Between the Cracking Noise of Ethanol-Dampened Charcoal and Earthquakes.
    Ribeiro HV; Costa LS; Alves LG; Santoro PA; Picoli S; Lenzi EK; Mendes RS
    Phys Rev Lett; 2015 Jul; 115(2):025503. PubMed ID: 26207479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Universal" distribution of interearthquake times explained.
    Saichev A; Sornette D
    Phys Rev Lett; 2006 Aug; 97(7):078501. PubMed ID: 17026277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decay of aftershock density with distance does not indicate triggering by dynamic stress.
    Richards-Dinger K; Stein RS; Toda S
    Nature; 2010 Sep; 467(7315):583-6. PubMed ID: 20882015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decay of aftershock density with distance indicates triggering by dynamic stress.
    Felzer KR; Brodsky EE
    Nature; 2006 Jun; 441(7094):735-8. PubMed ID: 16760974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Common dependence on stress for the two fundamental laws of statistical seismology.
    Narteau C; Byrdina S; Shebalin P; Schorlemmer D
    Nature; 2009 Dec; 462(7273):642-5. PubMed ID: 19956258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power-law rheology controls aftershock triggering and decay.
    Zhang X; Shcherbakov R
    Sci Rep; 2016 Nov; 6():36668. PubMed ID: 27819355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning of aftershock patterns following large earthquakes.
    DeVries PMR; Viégas F; Wattenberg M; Meade BJ
    Nature; 2018 Aug; 560(7720):632-634. PubMed ID: 30158606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review and Update on Some Connections between a Spring-Block SOC Model and Actual Seismicity in the Case of Subduction Zones.
    Salinas-Martínez A; Aguilar-Molina AM; Pérez-Oregon J; Angulo-Brown F; Muñoz-Diosdado A
    Entropy (Basel); 2022 Mar; 24(4):. PubMed ID: 35455099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical similarity between the compression of a porous material and earthquakes.
    Baró J; Corral Á; Illa X; Planes A; Salje EK; Schranz W; Soto-Parra DE; Vives E
    Phys Rev Lett; 2013 Feb; 110(8):088702. PubMed ID: 23473208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical physics models for aftershocks and induced seismicity.
    Luginbuhl M; Rundle JB; Turcotte DL
    Philos Trans A Math Phys Eng Sci; 2018 Nov; 377(2136):. PubMed ID: 30478209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Missing data in aftershock sequences: explaining the deviations from scaling laws.
    Lennartz S; Bunde A; Turcotte DL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041115. PubMed ID: 18999387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aftershocks are fluid-driven and decay rates controlled by permeability dynamics.
    Miller SA
    Nat Commun; 2020 Nov; 11(1):5787. PubMed ID: 33188178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.