These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30011523)

  • 1. Dynamic topologies of activity-driven temporal networks with memory.
    Kim H; Ha M; Jeong H
    Phys Rev E; 2018 Jun; 97(6-1):062148. PubMed ID: 30011523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed percolation in random temporal network models with heterogeneities.
    Badie-Modiri A; Rizi AK; Karsai M; Kivelä M
    Phys Rev E; 2022 May; 105(5-1):054313. PubMed ID: 35706217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural properties of the synchronized cluster on complex networks.
    Kim Y; Ko Y; Yook SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011139. PubMed ID: 20365355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random walks in time-varying networks with memory.
    Wang B; Zeng H; Han Y
    Phys Rev E; 2020 Dec; 102(6-1):062309. PubMed ID: 33466012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion trapping times and dynamic percolation in an Ising system.
    Chen CL; Shapir Y; Chimowitz EH
    J Chem Phys; 2008 Jul; 129(2):024701. PubMed ID: 18624546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic scaling in one-dimensional cluster-cluster aggregation.
    Hellen EK; Simula TP; Alava MJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt A):4752-6. PubMed ID: 11089017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging and percolation dynamics in a Non-Poissonian temporal network model.
    Moinet A; Starnini M; Pastor-Satorras R
    Phys Rev E; 2016 Aug; 94(2-1):022316. PubMed ID: 27627326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling properties of scale-free evolving networks: continuous approach.
    Dorogovtsev SN; Mendes JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056125. PubMed ID: 11414979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Random sequential renormalization and agglomerative percolation in networks: application to Erdös-Rényi and scale-free graphs.
    Bizhani G; Grassberger P; Paczuski M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066111. PubMed ID: 22304159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of disorder strength on optimal paths in complex networks.
    Sreenivasan S; Kalisky T; Braunstein LA; Buldyrev SV; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046133. PubMed ID: 15600486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheology of gelling polymers in the Zimm model.
    Löwe H; Müller P; Zippelius A
    J Chem Phys; 2005 Jan; 122(1):14905. PubMed ID: 15638698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal percolation in activity-driven networks.
    Starnini M; Pastor-Satorras R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032807. PubMed ID: 24730899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended finite-size scaling of synchronized coupled oscillators.
    Choi C; Ha M; Kahng B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032126. PubMed ID: 24125232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronization transition of heterogeneously coupled oscillators on scale-free networks.
    Oh E; Lee DS; Kahng B; Kim D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011104. PubMed ID: 17358107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical behavior of a three-dimensional random-bond Ising model using finite-time scaling with extensive Monte Carlo renormalization-group method.
    Xiong W; Zhong F; Yuan W; Fan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051132. PubMed ID: 20866210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A finite-size dynamic-scaling approach for the diffusion front of particles.
    Chappa VC; Albano EV
    J Chem Phys; 2004 Jul; 121(1):328-32. PubMed ID: 15260551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collective relaxation dynamics of small-world networks.
    Grabow C; Grosskinsky S; Kurths J; Timme M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052815. PubMed ID: 26066220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation between the degree and betweenness centrality distribution in complex networks.
    Masoomy H; Adami V; Najafi MN
    Phys Rev E; 2023 Apr; 107(4-1):044303. PubMed ID: 37198866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling and crossover dynamics in the hyperbolic reaction-diffusion equations of initially separated components.
    Abi Mansour A; Al Ghoul M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026107. PubMed ID: 21929064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Naming games in two-dimensional and small-world-connected random geometric networks.
    Lu Q; Korniss G; Szymanski BK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016111. PubMed ID: 18351919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.