These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 30011551)

  • 1. Dependence of the entrainment on the ratio of amplitudes between two subgroups in the suprachiasmatic nucleus.
    Gu C; Yang H; Meijer JH; Rohling JHT
    Phys Rev E; 2018 Jun; 97(6-1):062215. PubMed ID: 30011551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entrainment range of the suprachiasmatic nucleus affected by the difference in the neuronal amplitudes between the light-sensitive and light-insensitive regions.
    Gu C; Yang H; Ruan Z
    Phys Rev E; 2017 Apr; 95(4-1):042409. PubMed ID: 28505726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The asymmetry of the entrainment range induced by the difference in intrinsic frequencies between two subgroups within the suprachiasmatic nucleus.
    Gu C; Yang H
    Chaos; 2017 Jun; 27(6):063115. PubMed ID: 28679229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus.
    Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH
    J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in intrinsic amplitudes of neuronal oscillators improve synchronization in the suprachiasmatic nucleus.
    Gu C; Yang H
    Chaos; 2017 Sep; 27(9):093108. PubMed ID: 28964140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced phase resetting in the synchronized suprachiasmatic nucleus network.
    Ramkisoensing A; Gu C; van Engeldorp Gastelaars HM; Michel S; Deboer T; Rohling JH; Meijer JH
    J Biol Rhythms; 2014 Feb; 29(1):4-15. PubMed ID: 24492878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression profiles of PER2 immunoreactivity within the shell and core regions of the rat suprachiasmatic nucleus: lack of effect of photic entrainment and disruption by constant light.
    Beaulé C; Houle LM; Amir S
    J Mol Neurosci; 2003; 21(2):133-47. PubMed ID: 14593213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motif structure for the four subgroups within the suprachiasmatic nuclei affects its entrainment ability.
    Zheng W; Gu C; Yang H; Rohling JHT
    Phys Rev E; 2022 Jan; 105(1-1):014314. PubMed ID: 35193260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entrainment of the suprachiasmatic nucleus network by a light-dark cycle.
    Xu J; Gu C; Pumir A; Garnier N; Liu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041903. PubMed ID: 23214611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entrainment range of nonidentical circadian oscillators by a light-dark cycle.
    Gu C; Xu J; Liu Z; Rohling JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022702. PubMed ID: 24032859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro.
    Molyneux PC; Dahlgren MK; Harrington ME
    Brain Res; 2008 Sep; 1228():127-34. PubMed ID: 18598681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of non-self-sustained oscillators on the en-trainment ability of the suprachiasmatic nucleus.
    Gu C; Tang M; Rohling JH; Yang H
    Sci Rep; 2016 Nov; 6():37661. PubMed ID: 27869182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity of circadian behavior and the suprachiasmatic nucleus following exposure to non-24-hour light cycles.
    Aton SJ; Block GD; Tei H; Yamazaki S; Herzog ED
    J Biol Rhythms; 2004 Jun; 19(3):198-207. PubMed ID: 15155006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus.
    de la Iglesia HO; Cambras T; Schwartz WJ; Díez-Noguera A
    Curr Biol; 2004 May; 14(9):796-800. PubMed ID: 15120072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of Clock in the plasticity of circadian entrainment.
    Udo R; Hamada T; Horikawa K; Iwahana E; Miyakawa K; Otsuka K; Shibata S
    Biochem Biophys Res Commun; 2004 Jun; 318(4):893-8. PubMed ID: 15147955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of photoperiod duration and light-dark transitions on entrainment of Per1 and Per2 gene and protein expression in subdivisions of the mouse suprachiasmatic nucleus.
    Sosniyenko S; Hut RA; Daan S; Sumová A
    Eur J Neurosci; 2009 Nov; 30(9):1802-14. PubMed ID: 19840112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unexpected c-fos gene expression in the suprachiasmatic nucleus of mice entrained to a skeleton photoperiod.
    Schwartz WJ; Peters RV; Aronin N; Bennett MR
    J Biol Rhythms; 1996 Mar; 11(1):35-44. PubMed ID: 8695890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor activity rhythms of forced desynchronized rats subjected to restricted feeding.
    Anglès-Pujolràs M; Chiesa JJ; Díez-Noguera A; Cambras T
    Physiol Behav; 2006 Jun; 88(1-2):30-8. PubMed ID: 16630636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.