These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30011570)

  • 1. Finite-size scaling for discontinuous nonequilibrium phase transitions.
    de Oliveira MM; da Luz MGE; Fiore CE
    Phys Rev E; 2018 Jun; 97(6-1):060101. PubMed ID: 30011570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states.
    de Oliveira MM; da Luz MG; Fiore CE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062126. PubMed ID: 26764651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal disorder does not forbid discontinuous absorbing phase transitions in low-dimensional systems.
    de Oliveira MM; Fiore CE
    Phys Rev E; 2016 Nov; 94(5-1):052138. PubMed ID: 27967145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of distinct kinds of temporal disorder in discontinuous phase transitions.
    Encinas JM; Fiore CE
    Phys Rev E; 2021 Mar; 103(3-1):032124. PubMed ID: 33862793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discontinuous transitions can survive to quenched disorder in a two-dimensional nonequilibrium system.
    Neto MA; Brigatti E
    Phys Rev E; 2020 Feb; 101(2-1):022112. PubMed ID: 32168664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial inertia induces additional phase transition in the majority vote model.
    Harunari PE; de Oliveira MM; Fiore CE
    Phys Rev E; 2017 Oct; 96(4-1):042305. PubMed ID: 29347484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite-size scaling theory for explosive percolation transitions.
    Cho YS; Kim SW; Noh JD; Kahng B; Kim D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):042102. PubMed ID: 21230331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-size scaling of directed percolation in the steady state.
    Janssen HK; Lübeck S; Stenull O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041126. PubMed ID: 17994955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite-size scaling at first-order quantum transitions.
    Campostrini M; Nespolo J; Pelissetto A; Vicari E
    Phys Rev Lett; 2014 Aug; 113(7):070402. PubMed ID: 25170692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-size scaling analysis of a nonequilibrium phase transition in the naming game model.
    Brigatti E; Hernández A
    Phys Rev E; 2016 Nov; 94(5-1):052308. PubMed ID: 27967000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of particle collisions in dense suspension flows.
    Düring G; Lerner E; Wyart M
    Phys Rev E; 2016 Aug; 94(2-1):022601. PubMed ID: 27627354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially extended bistable system in an oscillating field.
    Korniss G; Rikvold PA; Novotny MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056127. PubMed ID: 12513576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-size scaling in the system of coupled oscillators with heterogeneity in coupling strength.
    Hong H
    Phys Rev E; 2017 Jul; 96(1-1):012213. PubMed ID: 29347132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tricritical behavior of nonequilibrium Ising spins in fluctuating environments.
    Park JM; Noh JD
    Phys Rev E; 2017 Apr; 95(4-1):042106. PubMed ID: 28505858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium phase transition in a model for the propagation of innovations among economic agents.
    Llas M; Gleiser PM; López JM; Díaz-Guilera A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066101. PubMed ID: 14754263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulations of the critical properties of a Ziff-Gulari-Barshad model of catalytic CO oxidation with long-range reactivity.
    Chan CH; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012103. PubMed ID: 25679566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorbing-state phase transitions on percolating lattices.
    Lee MY; Vojta T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041112. PubMed ID: 19518178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-size scaling analysis of isotropic-polar phase transitions in an amphiphilic fluid.
    Melle M; Giura S; Schlotthauer S; Schoen M
    J Phys Condens Matter; 2012 Jan; 24(3):035103. PubMed ID: 22173064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comment on "Finite-size scaling of survival probability in branching processes".
    Wei N; Pruessner G
    Phys Rev E; 2016 Dec; 94(6-2):066101. PubMed ID: 28085403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous and discontinuous absorbing-state phase transitions on Voronoi-Delaunay random lattices.
    de Oliveira MM; Alves SG; Ferreira SC
    Phys Rev E; 2016 Jan; 93(1):012110. PubMed ID: 26871027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.