These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 30011585)
1. Universal relations of local order parameters for partially synchronized oscillators. Omel'chenko OE; Sebek M; Kiss IZ Phys Rev E; 2018 Jun; 97(6-1):062207. PubMed ID: 30011585 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability. Zou W; Wang J Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968 [TBL] [Abstract][Full Text] [Related]
3. Finite-size-induced transitions to synchrony in oscillator ensembles with nonlinear global coupling. Komarov M; Pikovsky A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):020901. PubMed ID: 26382333 [TBL] [Abstract][Full Text] [Related]
4. Phase-lag synchronization in networks of coupled chemical oscillators. Totz JF; Snari R; Yengi D; Tinsley MR; Engel H; Showalter K Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022819. PubMed ID: 26382466 [TBL] [Abstract][Full Text] [Related]
5. Synchronization of three electrochemical oscillators: From local to global coupling. Liu Y; Sebek M; Mori F; Kiss IZ Chaos; 2018 Apr; 28(4):045104. PubMed ID: 31906643 [TBL] [Abstract][Full Text] [Related]
6. Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model. Omel'chenko OE; Wolfrum M Phys Rev Lett; 2012 Oct; 109(16):164101. PubMed ID: 23215080 [TBL] [Abstract][Full Text] [Related]
7. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators. Yue W; Smith LD; Gottwald GA Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503 [TBL] [Abstract][Full Text] [Related]
8. Finite-size effect in Kuramoto oscillators with higher-order interactions. Suman A; Jalan S Chaos; 2024 Oct; 34(10):. PubMed ID: 39393186 [TBL] [Abstract][Full Text] [Related]
9. Low-dimensional dynamics for higher-order harmonic, globally coupled phase-oscillator ensembles. Gong CC; Pikovsky A Phys Rev E; 2019 Dec; 100(6-1):062210. PubMed ID: 31962527 [TBL] [Abstract][Full Text] [Related]
10. Chaos in generically coupled phase oscillator networks with nonpairwise interactions. Bick C; Ashwin P; Rodrigues A Chaos; 2016 Sep; 26(9):094814. PubMed ID: 27781441 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter. Chen B; Engelbrecht JR; Mirollo R Chaos; 2019 Jan; 29(1):013126. PubMed ID: 30709124 [TBL] [Abstract][Full Text] [Related]
12. A universal order parameter for synchrony in networks of limit cycle oscillators. Schröder M; Timme M; Witthaut D Chaos; 2017 Jul; 27(7):073119. PubMed ID: 28764398 [TBL] [Abstract][Full Text] [Related]
13. Synchronization and phase redistribution in self-replicating populations of coupled oscillators and excitable elements. Yu W; Wood KB Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062708. PubMed ID: 26172737 [TBL] [Abstract][Full Text] [Related]
14. Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators. Roberts DC Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031114. PubMed ID: 18517336 [TBL] [Abstract][Full Text] [Related]
15. Enlarged Kuramoto model: Secondary instability and transition to collective chaos. León I; Pazó D Phys Rev E; 2022 Apr; 105(4):L042201. PubMed ID: 35590592 [TBL] [Abstract][Full Text] [Related]
16. The Sakaguchi-Kuramoto model in presence of asymmetric interactions that break phase-shift symmetry. Manoranjani M; Gupta S; Chandrasekar VK Chaos; 2021 Aug; 31(8):083130. PubMed ID: 34470257 [TBL] [Abstract][Full Text] [Related]
17. Kuramoto model subject to subsystem resetting: How resetting a part of the system may synchronize the whole of it. Majumder R; Chattopadhyay R; Gupta S Phys Rev E; 2024 Jun; 109(6-1):064137. PubMed ID: 39020942 [TBL] [Abstract][Full Text] [Related]
18. Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise. Gong CC; Zheng C; Toenjes R; Pikovsky A Chaos; 2019 Mar; 29(3):033127. PubMed ID: 30927833 [TBL] [Abstract][Full Text] [Related]
19. Complex dynamics of an oscillator ensemble with uniformly distributed natural frequencies and global nonlinear coupling. Baibolatov Y; Rosenblum M; Zhanabaev ZZh; Pikovsky A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016212. PubMed ID: 20866712 [TBL] [Abstract][Full Text] [Related]
20. Rotating clusters in phase-lagged Kuramoto oscillators with higher-order interactions. Moyal B; Rajwani P; Dutta S; Jalan S Phys Rev E; 2024 Mar; 109(3-1):034211. PubMed ID: 38632814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]