These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 30011616)
1. Bioactivity and mineralization of hydroxyapatite with bioglass as sintering aid and bioceramics with Na Demirkiran H; Mohandas A; Dohi M; Fuentes A; Nguyen K; Aswath P Mater Sci Eng C Mater Biol Appl; 2010 Jan; 30(2):263-272. PubMed ID: 30011616 [TBL] [Abstract][Full Text] [Related]
2. Bioactivity and mineralization of natural hydroxyapatite from cuttlefish bone and Bioglass Cozza N; Monte F; Bonani W; Aswath P; Motta A; Migliaresi C J Tissue Eng Regen Med; 2018 Feb; 12(2):e1131-e1142. PubMed ID: 28500666 [TBL] [Abstract][Full Text] [Related]
3. The sintering and mechanical behavior of hydroxyapatite with bioglass additions. Tancred DC; Carr AJ; McCormack BA J Mater Sci Mater Med; 2001 Jan; 12(1):81-93. PubMed ID: 15348381 [TBL] [Abstract][Full Text] [Related]
4. Incorporation of 45S5 bioglass via sol-gel in β-TCP scaffolds: Bioactivity and antimicrobial activity evaluation. Spirandeli BR; Ribas RG; Amaral SS; Martins EF; Esposito E; Vasconcellos LMR; Campos TMB; Thim GP; Trichês ES Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112453. PubMed ID: 34857256 [TBL] [Abstract][Full Text] [Related]
5. Gel-derived bioglass as a compound of hydroxyapatite composites. Cholewa-Kowalska K; Kokoszka J; Laczka M; Niedźwiedzki L; Madej W; Osyczka AM Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of sol-gel based magnetic 45S5 bioglass and bioglass-ceramics containing iron oxide. Shankhwar N; Srinivasan A Mater Sci Eng C Mater Biol Appl; 2016 May; 62():190-6. PubMed ID: 26952414 [TBL] [Abstract][Full Text] [Related]
7. Silicate-substituted calcium phosphate with enhanced strut porosity stimulates osteogenic differentiation of human mesenchymal stem cells. De Godoy RF; Hutchens S; Campion C; Blunn G J Mater Sci Mater Med; 2015 Jan; 26(1):5387. PubMed ID: 25596863 [TBL] [Abstract][Full Text] [Related]
8. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. Ni S; Chang J J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892 [TBL] [Abstract][Full Text] [Related]
9. A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass using surface sensitive shallow angle X-ray diffraction. Martin RA; Twyman H; Qiu D; Knowles JC; Newport RJ J Mater Sci Mater Med; 2009 Apr; 20(4):883-8. PubMed ID: 19083082 [TBL] [Abstract][Full Text] [Related]
10. Effect of Mg and Si co-substitution on microstructure and strength of tricalcium phosphate ceramics. García-Páez IH; Carrodeguas RG; De Aza AH; Baudín C; Pena P J Mech Behav Biomed Mater; 2014 Feb; 30():1-15. PubMed ID: 24216308 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds. Chen QZ; Thouas GA Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791 [TBL] [Abstract][Full Text] [Related]
12. In vitro study of the proliferation and growth of human fetal osteoblasts on Mg and Si co-substituted tricalcium phosphate ceramics. Parra J; García Páez IH; De Aza AH; Baudin C; Rocío Martín M; Pena P J Biomed Mater Res A; 2017 Aug; 105(8):2266-2275. PubMed ID: 28426904 [TBL] [Abstract][Full Text] [Related]
13. Current Development in Biomaterials-Hydroxyapatite and Bioglass for Applications in Biomedical Field: A Review. Filip DG; Surdu VA; Paduraru AV; Andronescu E J Funct Biomater; 2022 Nov; 13(4):. PubMed ID: 36412889 [TBL] [Abstract][Full Text] [Related]
14. The effects of Ca2SiO4-Ca3(PO4)2 ceramics on adult human mesenchymal stem cell viability, adhesion, proliferation, differentiation and function. De Aza PN; García-Bernal D; Cragnolini F; Velasquez P; Meseguer-Olmo L Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4009-20. PubMed ID: 23910308 [TBL] [Abstract][Full Text] [Related]
15. Mechanical properties and in vitro bioactivity of Ca5(PO4)2SiO4 bioceramic. Lu W; Duan W; Guo Y; Ning C J Biomater Appl; 2012 Feb; 26(6):637-50. PubMed ID: 20876633 [TBL] [Abstract][Full Text] [Related]
16. Role of phase separation on the biological performance of 45S5 Bioglass Kowal TJ; Golovchak R; Chokshi T; Harms J; Thamma U; Jain H; Falk MM J Mater Sci Mater Med; 2017 Sep; 28(10):161. PubMed ID: 28905286 [TBL] [Abstract][Full Text] [Related]
17. Comparative evaluation of different calcium phosphate-based bone graft granules - an in vitro study with osteoblast-like cells. Bernhardt A; Lode A; Peters F; Gelinsky M Clin Oral Implants Res; 2013 Apr; 24(4):441-9. PubMed ID: 22092911 [TBL] [Abstract][Full Text] [Related]
18. A new hydroxyapatite-based biocomposite for bone replacement. Bellucci D; Sola A; Gazzarri M; Chiellini F; Cannillo V Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1091-101. PubMed ID: 23827547 [TBL] [Abstract][Full Text] [Related]
19. Effect of silicon content on the sintering and biological behaviour of Ca10(PO4)(6-x)(SiO4)x(OH)(2-x) ceramics. Palard M; Combes J; Champion E; Foucaud S; Rattner A; Bernache-Assollant D Acta Biomater; 2009 May; 5(4):1223-32. PubMed ID: 19036652 [TBL] [Abstract][Full Text] [Related]
20. In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate). Bretcanu O; Misra S; Roy I; Renghini C; Fiori F; Boccaccini AR; Salih V J Tissue Eng Regen Med; 2009 Feb; 3(2):139-48. PubMed ID: 19170250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]