These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 30011616)
21. Biological responses of human bone marrow mesenchymal stem cells to Sr-M-Si (M = Zn, Mg) silicate bioceramics. Zhang M; Wu C; Lin K; Fan W; Chen L; Xiao Y; Chang J J Biomed Mater Res A; 2012 Nov; 100(11):2979-90. PubMed ID: 22696393 [TBL] [Abstract][Full Text] [Related]
22. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation. Gandolfi MG; Ciapetti G; Taddei P; Perut F; Tinti A; Cardoso MV; Van Meerbeek B; Prati C Dent Mater; 2010 Oct; 26(10):974-92. PubMed ID: 20655582 [TBL] [Abstract][Full Text] [Related]
23. Cytocompatibility and osteogenic activity of a novel calcium phosphate silicate bioceramic: Silicocarnotite. Duan W; Ning C; Tang T J Biomed Mater Res A; 2013 Jul; 101(7):1955-61. PubMed ID: 23225789 [TBL] [Abstract][Full Text] [Related]
24. Influence of temperature and additives on the microstructure and sintering behaviour of hydroxyapatites with different Ca/P ratios. Fanovich MA; Porto Lopez JM J Mater Sci Mater Med; 1998 Jan; 9(1):53-60. PubMed ID: 15348702 [TBL] [Abstract][Full Text] [Related]
25. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Chen QZ; Thompson ID; Boccaccini AR Biomaterials; 2006 Apr; 27(11):2414-25. PubMed ID: 16336997 [TBL] [Abstract][Full Text] [Related]
26. In vitro bioactivity of titanium-doped bioglass. Asif IM; Shelton RM; Cooper PR; Addison O; Martin RA J Mater Sci Mater Med; 2014 Aug; 25(8):1865-73. PubMed ID: 24801063 [TBL] [Abstract][Full Text] [Related]
27. Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds. Thavornyutikarn B; Tesavibul P; Sitthiseripratip K; Chatarapanich N; Feltis B; Wright PFA; Turney TW Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1281-1288. PubMed ID: 28415417 [TBL] [Abstract][Full Text] [Related]
28. Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica. Leenakul W; Tunkasiri T; Tongsiri N; Pengpat K; Ruangsuriya J Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():695-704. PubMed ID: 26838899 [TBL] [Abstract][Full Text] [Related]
29. Surface reactions of calcium phosphate ceramics to various solutions. Hyakuna K; Yamamuro T; Kotoura Y; Oka M; Nakamura T; Kitsugi T; Kokubo T; Kushitani H J Biomed Mater Res; 1990 Apr; 24(4):471-88. PubMed ID: 2347873 [TBL] [Abstract][Full Text] [Related]
30. Structural and phase characterization of bioceramics prepared from tetracalcium phosphate-monetite cement and in vitro osteoblast response. Stulajterova R; Medvecky L; Giretova M; Sopcak T J Mater Sci Mater Med; 2015 May; 26(5):183. PubMed ID: 25893389 [TBL] [Abstract][Full Text] [Related]
31. Mg or Zn for Ca substitution improves the sintering of bioglass 45S5. Wetzel R; Blochberger M; Scheffler F; Hupa L; Brauer DS Sci Rep; 2020 Sep; 10(1):15964. PubMed ID: 32994461 [TBL] [Abstract][Full Text] [Related]
32. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication. Gao C; Yang B; Hu H; Liu J; Shuai C; Peng S Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3802-10. PubMed ID: 23910280 [TBL] [Abstract][Full Text] [Related]
33. Enhanced Stability of Calcium Sulfate Scaffolds with 45S5 Bioglass for Bone Repair. Shuai C; Zhou J; Wu P; Gao C; Feng P; Xiao T; Deng Y; Peng S Materials (Basel); 2015 Nov; 8(11):7498-7510. PubMed ID: 28793652 [TBL] [Abstract][Full Text] [Related]
34. In situ hydroxyapatite nanofiber growth on calcium borate silicate ceramics in SBF and its structural characteristics. Pu Y; Huang Y; Qi S; Chen C; Seo HJ Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():126-30. PubMed ID: 26117746 [TBL] [Abstract][Full Text] [Related]
35. Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control. Wagner DE; Jones AD; Zhou H; Bhaduri SB Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1710-9. PubMed ID: 23827628 [TBL] [Abstract][Full Text] [Related]
37. Investigating the addition of SiO₂-CaO-ZnO-Na₂O-TiO₂ bioactive glass to hydroxyapatite: Characterization, mechanical properties and bioactivity. Yatongchai C; Placek LM; Curran DJ; Towler MR; Wren AW J Biomater Appl; 2015 Nov; 30(5):495-511. PubMed ID: 26116020 [TBL] [Abstract][Full Text] [Related]
38. Enhanced magnetic performance and in-vitro apatite-forming ability of the CoFe Jaita P; Jarupoom P Microsc Res Tech; 2023 Jul; 86(7):882-897. PubMed ID: 37232368 [TBL] [Abstract][Full Text] [Related]
39. Development of Cellular Signaling Pathways by Bioceramic Heat Treatment (Sintering) in Osteoblast Cells. Jung Y; Kim J; Kim S; Chung SH; Wie J Biomedicines; 2023 Mar; 11(3):. PubMed ID: 36979764 [TBL] [Abstract][Full Text] [Related]
40. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity. Sola A; Bellucci D; Raucci MG; Zeppetelli S; Ambrosio L; Cannillo V J Biomed Mater Res A; 2012 Feb; 100(2):305-22. PubMed ID: 22052581 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]