BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30011953)

  • 1. Development of Conjugate Addition of Lithium Dialkylcuprates to Thiochromones: Synthesis of 2-Alkylthiochroman-4-ones and Additional Synthetic Applications.
    Bass SA; Parker DM; Bellinger TJ; Eaton AS; Dibble AS; Koroma KL; Sekyi SA; Pollard DA; Guo F
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30011953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conjugate Addition of Grignard Reagents to Thiochromones Catalyzed by Copper Salts: A Unified Approach to Both 2-Alkylthiochroman-4-One and Thioflavanone.
    Bellinger TJ; Harvin T; Pickens-Flynn T; Austin N; Whitaker SH; Tang Yuk Tutein MLC; Hukins DT; Deese N; Guo F
    Molecules; 2020 May; 25(9):. PubMed ID: 32370080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress on the Cu-Catalyzed 1,4-Conjugate Addition to Thiochromones.
    Guo F; Young JA; Perez MS; Hankerson HA; Chavez AM
    Catalysts; 2023 Apr; 13(4):. PubMed ID: 37293477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conjugate addition reactions of N-carbamoyl-4-pyridones with organometallic reagents.
    Dieter RK; Guo F
    J Org Chem; 2009 May; 74(10):3843-8. PubMed ID: 19366232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of optically active β- or γ-alkyl-substituted alcohols through copper-catalyzed asymmetric allylic alkylation with organolithium reagents.
    Guduguntla S; Fañanás-Mastral M; Feringa BL
    J Org Chem; 2013 Sep; 78(17):8274-80. PubMed ID: 23962149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral Diarylmethanes via Copper-Catalyzed Asymmetric Allylic Arylation with Organolithium Compounds.
    Guduguntla S; Hornillos V; Tessier R; Fañanás-Mastral M; Feringa BL
    Org Lett; 2016 Jan; 18(2):252-5. PubMed ID: 26699930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and antimicrobial activity of 2-alkenylchroman-4-ones, 2-alkenylthiochroman-4-ones and 2-alkenylquinol-4-ones.
    Hoettecke N; Rotzoll S; Albrecht U; Lalk M; Fischer C; Langer P
    Bioorg Med Chem; 2008 Dec; 16(24):10319-25. PubMed ID: 18977661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C(aryl)-C(alkyl) bond formation from Cu(ClO4)2-mediated oxidative cross coupling reaction between arenes and alkyllithium reagents through structurally well-defined Ar-Cu(III) intermediates.
    Wang ZL; Zhao L; Wang MX
    Chem Commun (Camb); 2012 Sep; 48(75):9418-20. PubMed ID: 22892907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metalated nitriles: organolithium, -magnesium, and -copper exchange of alpha-halonitriles.
    Fleming FF; Zhang Z; Liu W; Knochel P
    J Org Chem; 2005 Mar; 70(6):2200-5. PubMed ID: 15760206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1,4-Dilithio-1,3-dienes: reaction and synthetic applications.
    Xi Z
    Acc Chem Res; 2010 Oct; 43(10):1342-51. PubMed ID: 20954749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective Copper(I)-Catalyzed Alkynylation of Oxocarbenium Ions to Set Diaryl Tetrasubstituted Stereocenters.
    Dasgupta S; Rivas T; Watson MP
    Angew Chem Int Ed Engl; 2015 Nov; 54(47):14154-8. PubMed ID: 26403641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly enantioselective Cu(I)-Tol-BINAP-catalyzed asymmetric conjugate addition of Grignard reagents to α,β-unsaturated esters.
    Wang SY; Loh TP
    Chem Commun (Camb); 2010 Dec; 46(46):8694-703. PubMed ID: 21038042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation, structure and reactivity of tertiary organolithium reagents.
    Perry MA; Rychnovsky SD
    Nat Prod Rep; 2015 Apr; 32(4):517-33. PubMed ID: 25475042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spirodiepoxide reaction with cuprates.
    Ghosh P; Lotesta SD; Williams LJ
    J Am Chem Soc; 2007 Mar; 129(9):2438-9. PubMed ID: 17288427
    [No Abstract]   [Full Text] [Related]  

  • 15. Copper-mediated, palladium-catalyzed cross-coupling of 3-iodochromones, thiochromones, and quinolones with ethyl bromodifluoroacetate.
    Han X; Yue Z; Zhang X; He Q; Yang C
    J Org Chem; 2013 May; 78(10):4850-6. PubMed ID: 23594098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New organolithium addition methodology to diversely functionalized indoles.
    Coleman CM; O'Shea DF
    J Am Chem Soc; 2003 Apr; 125(14):4054-5. PubMed ID: 12670219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugate addition of lithium N-phenyl-N-(α-methylbenzyl)amide: application to the asymmetric synthesis of (R)-(-)-angustureine.
    Bentley SA; Davies SG; Lee JA; Roberts PM; Thomson JE
    Org Lett; 2011 May; 13(10):2544-7. PubMed ID: 21495642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric synthesis of 3,4-anti- and 3,4-syn-substituted aminopyrrolidines via lithium amide conjugate addition.
    Davies SG; Garner AC; Goddard EC; Kruchinin D; Roberts PM; Smith AD; Rodriguez-Solla H; Thomson JE; Toms SM
    Org Biomol Chem; 2007 Jun; 5(12):1961-9. PubMed ID: 17551646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound-promoted greener synthesis of 2H-chromen-2-ones catalyzed by copper perchlorate in solventless media.
    Puri S; Kaur B; Parmar A; Kumar H
    Ultrason Sonochem; 2009 Aug; 16(6):705-7. PubMed ID: 19423380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic approach to flavanones and flavones via ligand-free palladium(II)-catalyzed conjugate addition of arylboronic acids to chromones.
    Kim D; Ham K; Hong S
    Org Biomol Chem; 2012 Sep; 10(36):7305-12. PubMed ID: 22850763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.