BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 30012349)

  • 41. Characterization of a highly specific monoclonal antibody against human aldo-keto reductase AKR1C3.
    Liu J; He P; Lin L; Zhao Y; Deng W; Ding H; Li Q; Wang Z
    Steroids; 2019 Mar; 143():73-79. PubMed ID: 30639543
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Type 5 17-hydroxysteroid dehydrogenase/prostaglandin F synthase (AKR1C3) inhibition and potential anti-proliferative activity of cholest-4-ene-3,6-dione in MCF-7 breast cancer cells.
    Sali VK; Mani S; Meenaloshani G; Velmurugan Ilavarasi A; Vasanthi HR
    Steroids; 2020 Jul; 159():108638. PubMed ID: 32209376
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Discovery of substituted 3-(phenylamino)benzoic acids as potent and selective inhibitors of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3).
    Adeniji AO; Twenter BM; Byrns MC; Jin Y; Winkler JD; Penning TM
    Bioorg Med Chem Lett; 2011 Mar; 21(5):1464-8. PubMed ID: 21277203
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Insulin-Induced AKR1C3 Induces Fatty Acid Synthase in a Model of Human PCOS Adipocytes.
    Paulukinas RD; Penning TM
    Endocrinology; 2023 Mar; 164(5):. PubMed ID: 36799021
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of a monoclonal antibody for human aldo-keto reductase AKR1C3 (type 2 3alpha-hydroxysteroid dehydrogenase/type 5 17beta-hydroxysteroid dehydrogenase); immunohistochemical detection in breast and prostate.
    Lin HK; Steckelbroeck S; Fung KM; Jones AN; Penning TM
    Steroids; 2004 Dec; 69(13-14):795-801. PubMed ID: 15582534
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conversion of Classical and 11-Oxygenated Androgens by Insulin-Induced AKR1C3 in a Model of Human PCOS Adipocytes.
    Paulukinas RD; Mesaros CA; Penning TM
    Endocrinology; 2022 Jul; 163(7):. PubMed ID: 35560164
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The aldo-keto reductase AKR1C3 is a novel suppressor of cell differentiation that provides a plausible target for the non-cyclooxygenase-dependent antineoplastic actions of nonsteroidal anti-inflammatory drugs.
    Desmond JC; Mountford JC; Drayson MT; Walker EA; Hewison M; Ride JP; Luong QT; Hayden RE; Vanin EF; Bunce CM
    Cancer Res; 2003 Jan; 63(2):505-12. PubMed ID: 12543809
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of Novel AKR1C3 Inhibitors as New Potential Treatment for Castration-Resistant Prostate Cancer.
    Endo S; Oguri H; Segawa J; Kawai M; Hu D; Xia S; Okada T; Irie K; Fujii S; Gouda H; Iguchi K; Matsukawa T; Fujimoto N; Nakayama T; Toyooka N; Matsunaga T; Ikari A
    J Med Chem; 2020 Sep; 63(18):10396-10411. PubMed ID: 32847363
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Roscovitine and purvalanol A effectively reverse anthracycline resistance mediated by the activity of aldo-keto reductase 1C3 (AKR1C3): A promising therapeutic target for cancer treatment.
    Novotná E; Büküm N; Hofman J; Flaxová M; Kouklíková E; Louvarová D; Wsól V
    Biochem Pharmacol; 2018 Oct; 156():22-31. PubMed ID: 30077642
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selective inhibition of aldo-keto reductase 1C3: a novel mechanism involved in midostaurin and daunorubicin synergism.
    Morell A; Novotná E; Milan J; Danielisová P; Büküm N; Wsól V
    Arch Toxicol; 2021 Jan; 95(1):67-78. PubMed ID: 33025066
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aldo-keto reductase 1C3 is overexpressed in skin squamous cell carcinoma (SCC) and affects SCC growth via prostaglandin metabolism.
    Mantel A; Carpenter-Mendini A; VanBuskirk J; Pentland AP
    Exp Dermatol; 2014 Aug; 23(8):573-8. PubMed ID: 24917395
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Instability of C154Y variant of aldo-keto reductase 1C3.
    Endo S; Takada S; Honda RP; Müller K; Weishaupt JH; Andersen PM; Ludolph AC; Kamatari YO; Matsunaga T; Kuwata K; El-Kabbani O; Ikari A
    Chem Biol Interact; 2017 Oct; 276():194-202. PubMed ID: 28025170
    [TBL] [Abstract][Full Text] [Related]  

  • 53. AKR1C3 in carcinomas: from multifaceted roles to therapeutic strategies.
    Li M; Zhang L; Yu J; Wang X; Cheng L; Ma Z; Chen X; Wang L; Goh BC
    Front Pharmacol; 2024; 15():1378292. PubMed ID: 38523637
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Activity of SN33638, an Inhibitor of AKR1C3, on Testosterone and 17β-Estradiol Production and Function in Castration-Resistant Prostate Cancer and ER-Positive Breast Cancer.
    Yin YD; Fu M; Brooke DG; Heinrich DM; Denny WA; Jamieson SM
    Front Oncol; 2014; 4():159. PubMed ID: 24995161
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Overview of AKR1C3: Inhibitor Achievements and Disease Insights.
    Liu Y; He S; Chen Y; Liu Y; Feng F; Liu W; Guo Q; Zhao L; Sun H
    J Med Chem; 2020 Oct; 63(20):11305-11329. PubMed ID: 32463235
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Buparlisib is a novel inhibitor of daunorubicin reduction mediated by aldo-keto reductase 1C3.
    Bukum N; Novotna E; Morell A; Hofman J; Wsol V
    Chem Biol Interact; 2019 Apr; 302():101-107. PubMed ID: 30703376
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Steroid hormone transforming aldo-keto reductases and cancer.
    Penning TM; Byrns MC
    Ann N Y Acad Sci; 2009 Feb; 1155():33-42. PubMed ID: 19250190
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cinnamic acids as new inhibitors of 17beta-hydroxysteroid dehydrogenase type 5 (AKR1C3).
    Brozic P; Golob B; Gomboc N; Rizner TL; Gobec S
    Mol Cell Endocrinol; 2006 Mar; 248(1-2):233-5. PubMed ID: 16337332
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design, Synthesis and Cytotoxicity Evaluation of Novel Indole Derivatives Containing Benzoic Acid Group as Potential AKR1C3 Inhibitors.
    Sun M; Zhou Y; Zhuo X; Wang S; Jiang S; Peng Z; Kang K; Zheng X; Sun M
    Chem Biodivers; 2020 Dec; 17(12):e2000519. PubMed ID: 33111427
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aldo-keto reductase family member C3 (AKR1C3) promotes hepatocellular carcinoma cell growth by producing prostaglandin F2α.
    Jeng KS; Cheng PY; Lin YH; Liu PC; Tseng PH; Wang YC; Chang CF; Leu CM
    Oncol Res; 2023; 32(1):163-174. PubMed ID: 38188684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.