BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30012356)

  • 1. Mining features for biomedical data using clustering tree ensembles.
    Pliakos K; Vens C
    J Biomed Inform; 2018 Sep; 85():40-48. PubMed ID: 30012356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks.
    Alachram H; Chereda H; Beißbarth T; Wingender E; Stegmaier P
    PLoS One; 2021; 16(10):e0258623. PubMed ID: 34653224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.
    Pliakos K; Vens C
    BMC Bioinformatics; 2020 Feb; 21(1):49. PubMed ID: 32033537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BioConceptVec: Creating and evaluating literature-based biomedical concept embeddings on a large scale.
    Chen Q; Lee K; Yan S; Kim S; Wei CH; Lu Z
    PLoS Comput Biol; 2020 Apr; 16(4):e1007617. PubMed ID: 32324731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient data preprocessing approach for large scale medical data mining.
    Hu YH; Lin WC; Tsai CF; Ke SW; Chen CW
    Technol Health Care; 2015; 23(2):153-60. PubMed ID: 25515050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Pareto-based Ensemble with Feature and Instance Selection for Learning from Multi-Class Imbalanced Datasets.
    Fernández A; Carmona CJ; José Del Jesus M; Herrera F
    Int J Neural Syst; 2017 Sep; 27(6):1750028. PubMed ID: 28633551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method for predicting kidney stone type using ensemble learning.
    Kazemi Y; Mirroshandel SA
    Artif Intell Med; 2018 Jan; 84():117-126. PubMed ID: 29241659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple-Swarm Ensembles: Improving the Predictive Power and Robustness of Predictive Models and Its Use in Computational Biology.
    Alves P; Liu S; Wang D; Gerstein M
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):926-933. PubMed ID: 28391206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approach to improve kernel-based Protein-Protein Interaction extraction by learning from large-scale network data.
    Li L; Guo R; Jiang Z; Huang D
    Methods; 2015 Jul; 83():44-50. PubMed ID: 25864936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustering approaches for visual knowledge exploration in molecular interaction networks.
    Ostaszewski M; Kieffer E; Danoy G; Schneider R; Bouvry P
    BMC Bioinformatics; 2018 Aug; 19(1):308. PubMed ID: 30157777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multicenter random forest model for effective prognosis prediction in collaborative clinical research network.
    Li J; Tian Y; Zhu Y; Zhou T; Li J; Ding K; Li J
    Artif Intell Med; 2020 Mar; 103():101814. PubMed ID: 32143809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient approach for feature construction of high-dimensional microarray data by random projections.
    Tariq H; Eldridge E; Welch I
    PLoS One; 2018; 13(4):e0196385. PubMed ID: 29702670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LEARNING PARSIMONIOUS ENSEMBLES FOR UNBALANCED COMPUTATIONAL GENOMICS PROBLEMS.
    Stanescu A; Pandey G
    Pac Symp Biocomput; 2017; 22():288-299. PubMed ID: 27896983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid data mining model for diagnosis of patients with clinical suspicion of dementia.
    Moreira LB; Namen AA
    Comput Methods Programs Biomed; 2018 Oct; 165():139-149. PubMed ID: 30337069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pairwise Constraint-Guided Sparse Learning for Feature Selection.
    Liu M; Zhang D
    IEEE Trans Cybern; 2016 Jan; 46(1):298-310. PubMed ID: 26151948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Programming for Evolving Similarity Functions for Clustering: Representations and Analysis.
    Lensen A; Xue B; Zhang M
    Evol Comput; 2020; 28(4):531-561. PubMed ID: 31599651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensembles of randomized trees using diverse distributed representations of clinical events.
    Henriksson A; Zhao J; Dalianis H; Boström H
    BMC Med Inform Decis Mak; 2016 Jul; 16 Suppl 2(Suppl 2):69. PubMed ID: 27459846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network-based characterization and prediction of human DNA repair genes and pathways.
    Li YH; Zhang GG
    Sci Rep; 2017 Apr; 8():45714. PubMed ID: 28368026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.