BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3001244)

  • 1. Identification of protein phosphatase 1 in synaptic junctions: dephosphorylation of endogenous calmodulin-dependent kinase II and synapse-enriched phosphoproteins.
    Shields SM; Ingebritsen TS; Kelly PT
    J Neurosci; 1985 Dec; 5(12):3414-22. PubMed ID: 3001244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental changes in calmodulin-kinase II activity at brain synaptic junctions: alterations in holoenzyme composition.
    Kelly PT; Shields S; Conway K; Yip R; Burgin K
    J Neurochem; 1987 Dec; 49(6):1927-40. PubMed ID: 2824699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calmodulin-dependent protein phosphorylation in synaptic junctions.
    Kelly PT; Yip RK; Shields SM; Hay M
    J Neurochem; 1985 Nov; 45(5):1620-34. PubMed ID: 4045467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autophosphorylation of calmodulin-kinase II in synaptic junctions modulates endogenous kinase activity.
    Shields SM; Vernon PJ; Kelly PT
    J Neurochem; 1984 Dec; 43(6):1599-609. PubMed ID: 6548510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution and properties of protein kinase and protein phosphatase activities in synaptosomal plasma membranes and synaptic junctions.
    Thérien HM; Mushynski WE
    Biochim Biophys Acta; 1979 Jun; 585(2):188-200. PubMed ID: 222346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The major calmodulin-stimulated phosphoprotein of synaptic junctions and the major post-synaptic density protein are distinct.
    Rostas JA; Brent VA; Dunkley PR
    Neurosci Lett; 1983 Dec; 43(2-3):161-5. PubMed ID: 6672692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dephosphorylation of autophosphorylated Ca2+/calmodulin-dependent protein kinase II by protein phosphatase 2C.
    Fukunaga K; Kobayashi T; Tamura S; Miyamoto E
    J Biol Chem; 1993 Jan; 268(1):133-7. PubMed ID: 8380154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the recombinant C-terminal domain of dystrophin: phosphorylation by calmodulin-dependent protein kinase II and dephosphorylation by type 2B protein phosphatase.
    Walsh MP; Busaan JL; Fraser ED; Fu SY; Pato MD; Michalak M
    Biochemistry; 1995 Apr; 34(16):5561-8. PubMed ID: 7727417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic AMP-stimulated protein kinases at brain synaptic junctions.
    Kelly PT; Cotman CW; Largen M
    J Biol Chem; 1979 Mar; 254(5):1564-75. PubMed ID: 216697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein phosphatase 1 is involved in the dissociation of Ca2+/calmodulin-dependent protein kinase II from postsynaptic densities.
    Yoshimura Y; Sogawa Y; Yamauchi T
    FEBS Lett; 1999 Mar; 446(2-3):239-42. PubMed ID: 10100849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dephosphorylation of Ser-137 in DARPP-32 by protein phosphatases 2A and 2C: different roles in vitro and in striatonigral neurons.
    Desdouits F; Siciliano JC; Nairn AC; Greengard P; Girault JA
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):211-6. PubMed ID: 9461512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defective sarcolemmal phosphorylation associated with noninsulin-dependent diabetes.
    Allo SN; Schaffer SW
    Biochim Biophys Acta; 1990 Apr; 1023(2):206-12. PubMed ID: 2158349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine- and cAMP-regulated phosphoprotein DARPP-32: phosphorylation of Ser-137 by casein kinase I inhibits dephosphorylation of Thr-34 by calcineurin.
    Desdouits F; Siciliano JC; Greengard P; Girault JA
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2682-5. PubMed ID: 7708705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular distribution of a calmodulin-dependent protein kinase activity in rat cerebral cortex during development.
    Weinberger RP; Rostas JA
    Brain Res; 1986 Sep; 394(1):37-50. PubMed ID: 3756531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous protein phosphorylation in chick and rat brain synaptic membranes.
    Sorensen RG; Babitch JA
    Neuroscience; 1983 Dec; 10(4):1497-512. PubMed ID: 6664499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein phosphatase and kinase activities possibly involved in exocytosis regulation in Paramecium tetraurelia.
    Kissmehl R; Treptau T; Hofer HW; Plattner H
    Biochem J; 1996 Jul; 317 ( Pt 1)(Pt 1):65-76. PubMed ID: 8694788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of endogenous calmodulin-dependent kinase and calmodulin-binding proteins in cold-stable microtubule preparations from rat brain.
    Larson RE; Goldenring JR; Vallano ML; DeLorenzo RJ
    J Neurochem; 1985 May; 44(5):1566-74. PubMed ID: 2985755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulation of glycogen metabolism. Phosphorylation of inhibitor-1 from rabbit skeletal muscle, and its interaction with protein phosphatases-III and -II.
    Nimmo GA; Cohen P
    Eur J Biochem; 1978 Jun; 87(2):353-65. PubMed ID: 208845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dephosphorylation of phosphoproteins of human liver plasma membranes by endogenous and purified liver alkaline phosphatases.
    Chan JR; Stinson RA
    J Biol Chem; 1986 Jun; 261(17):7635-9. PubMed ID: 3011792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation and reactivation of the multifunctional calmodulin-dependent protein kinase from brain by autophosphorylation and dephosphorylation: involvement of protein phosphatases from brain.
    Saitoh Y; Yamamoto H; Fukunaga K; Matsukado Y; Miyamoto E
    J Neurochem; 1987 Oct; 49(4):1286-92. PubMed ID: 3040911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.