These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 30012613)
1. Suppression of Gao P; Ho PL; Yan B; Sze KH; Davies J; Kao RYT Proc Natl Acad Sci U S A; 2018 Jul; 115(31):8003-8008. PubMed ID: 30012613 [TBL] [Abstract][Full Text] [Related]
2. Quercetin Reduces the Virulence of S. aureus by Targeting ClpP to Protect Mice from MRSA-Induced Lethal Pneumonia. Jing S; Kong X; Wang L; Wang H; Feng J; Wei L; Meng Y; Liu C; Chang X; Qu Y; Guan J; Yang H; Zhang C; Zhao Y; Song W Microbiol Spectr; 2022 Apr; 10(2):e0234021. PubMed ID: 35319277 [TBL] [Abstract][Full Text] [Related]
3. High-Throughput Screening Strategies for the Development of Anti-Virulence Inhibitors Against Staphylococcus aureus. Cai X; Zheng W; Li Z Curr Med Chem; 2019; 26(13):2297-2312. PubMed ID: 29165063 [TBL] [Abstract][Full Text] [Related]
4. Beta-lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus. Böttcher T; Sieber SA J Am Chem Soc; 2008 Nov; 130(44):14400-1. PubMed ID: 18847196 [TBL] [Abstract][Full Text] [Related]
5. Dehydrosqualene Desaturase as a Novel Target for Anti-Virulence Therapy against Gao P; Davies J; Kao RYT mBio; 2017 Sep; 8(5):. PubMed ID: 28874472 [No Abstract] [Full Text] [Related]
6. The FDA-approved anti-cancer drugs, streptozotocin and floxuridine, reduce the virulence of Staphylococcus aureus. Yeo WS; Arya R; Kim KK; Jeong H; Cho KH; Bae T Sci Rep; 2018 Feb; 8(1):2521. PubMed ID: 29410445 [TBL] [Abstract][Full Text] [Related]
7. Attenuating Staphylococcus aureus virulence gene regulation: a medicinal chemistry perspective. Gordon CP; Williams P; Chan WC J Med Chem; 2013 Feb; 56(4):1389-404. PubMed ID: 23294220 [TBL] [Abstract][Full Text] [Related]
8. The development of small-molecule modulators for ClpP protease activity. Ye F; Li J; Yang CG Mol Biosyst; 2016 Dec; 13(1):23-31. PubMed ID: 27831584 [TBL] [Abstract][Full Text] [Related]
10. VraR Binding to the Promoter Region of Dai Y; Chang W; Zhao C; Peng J; Xu L; Lu H; Zhou S; Ma X Antimicrob Agents Chemother; 2017 May; 61(5):. PubMed ID: 28289032 [TBL] [Abstract][Full Text] [Related]
11. Targeting MgrA-mediated virulence regulation in Staphylococcus aureus. Sun F; Zhou L; Zhao BC; Deng X; Cho H; Yi C; Jian X; Song CX; Luan CH; Bae T; Li Z; He C Chem Biol; 2011 Aug; 18(8):1032-41. PubMed ID: 21867918 [TBL] [Abstract][Full Text] [Related]
12. Development and characterization of improved β-lactone-based anti-virulence drugs targeting ClpP. Zeiler E; Korotkov VS; Lorenz-Baath K; Böttcher T; Sieber SA Bioorg Med Chem; 2012 Jan; 20(2):583-91. PubMed ID: 21855356 [TBL] [Abstract][Full Text] [Related]
13. Staphylococcus aureus nasal carriage, virulence traits, antibiotic resistance mechanisms, and genetic lineages in healthy humans in Spain, with detection of CC398 and CC97 strains. Lozano C; Gómez-Sanz E; Benito D; Aspiroz C; Zarazaga M; Torres C Int J Med Microbiol; 2011 Aug; 301(6):500-5. PubMed ID: 21570348 [TBL] [Abstract][Full Text] [Related]
14. Regulation of host hemoglobin binding by the Staphylococcus aureus Clp proteolytic system. Farrand AJ; Reniere ML; Ingmer H; Frees D; Skaar EP J Bacteriol; 2013 Nov; 195(22):5041-50. PubMed ID: 23995637 [TBL] [Abstract][Full Text] [Related]
15. Identification of an antivirulence agent targeting the master regulator of virulence genes in Arya R; Kim T; Youn JW; Bae T; Kim KK Front Cell Infect Microbiol; 2023; 13():1268044. PubMed ID: 38029271 [TBL] [Abstract][Full Text] [Related]
16. Anti-infective therapy using species-specific activators of Staphylococcus aureus ClpP. Wei B; Zhang T; Wang P; Pan Y; Li J; Chen W; Zhang M; Ji Q; Wu W; Lan L; Gan J; Yang CG Nat Commun; 2022 Nov; 13(1):6909. PubMed ID: 36376309 [TBL] [Abstract][Full Text] [Related]
17. Uncariitannin, a polyphenolic polymer from Uncaria gambier, attenuates Staphylococcus aureus virulence through an MgrA-mediated regulation of α-hemolysin. Zhang H; Jiang JM; Han L; Lao YZ; Zheng D; Chen YY; Wan SJ; Zheng CW; Tan HS; Li ZG; Xu HX Pharmacol Res; 2019 Sep; 147():104328. PubMed ID: 31288080 [TBL] [Abstract][Full Text] [Related]
18. Repurposing the Nonsteroidal Anti-inflammatory Drug Diflunisal as an Osteoprotective, Antivirulence Therapy for Staphylococcus aureus Osteomyelitis. Hendrix AS; Spoonmore TJ; Wilde AD; Putnam NE; Hammer ND; Snyder DJ; Guelcher SA; Skaar EP; Cassat JE Antimicrob Agents Chemother; 2016 Sep; 60(9):5322-30. PubMed ID: 27324764 [TBL] [Abstract][Full Text] [Related]
19. Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. Michel A; Agerer F; Hauck CR; Herrmann M; Ullrich J; Hacker J; Ohlsen K J Bacteriol; 2006 Aug; 188(16):5783-96. PubMed ID: 16885446 [TBL] [Abstract][Full Text] [Related]
20. Exposing the Unique Connection between Metabolism and Virulence in Staphylococcus aureus. Weiss A; Fleeman RM; Shaw LN Cell Chem Biol; 2016 Nov; 23(11):1317-1319. PubMed ID: 27863216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]