These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
597 related articles for article (PubMed ID: 30013066)
21. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Yu P; He X; Baer M; Beirinckx S; Tian T; Moya YAT; Zhang X; Deichmann M; Frey FP; Bresgen V; Li C; Razavi BS; Schaaf G; von Wirén N; Su Z; Bucher M; Tsuda K; Goormachtig S; Chen X; Hochholdinger F Nat Plants; 2021 Apr; 7(4):481-499. PubMed ID: 33833418 [TBL] [Abstract][Full Text] [Related]
22. Shifts in microbial communities in soil, rhizosphere and roots of two major crop systems under elevated CO Wang P; Marsh EL; Ainsworth EA; Leakey ADB; Sheflin AM; Schachtman DP Sci Rep; 2017 Nov; 7(1):15019. PubMed ID: 29101364 [TBL] [Abstract][Full Text] [Related]
24. Soil composition and plant genotype determine benzoxazinoid-mediated plant-soil feedbacks in cereals. Cadot S; Gfeller V; Hu L; Singh N; Sánchez-Vallet A; Glauser G; Croll D; Erb M; van der Heijden MGA; Schlaeppi K Plant Cell Environ; 2021 Dec; 44(12):3502-3514. PubMed ID: 34505297 [TBL] [Abstract][Full Text] [Related]
25. Root exudates and rhizosphere microbiomes jointly determine temporal shifts in plant-soil feedbacks. Steinauer K; Thakur MP; Emilia Hannula S; Weinhold A; Uthe H; van Dam NM; Martijn Bezemer T Plant Cell Environ; 2023 Jun; 46(6):1885-1899. PubMed ID: 36794528 [TBL] [Abstract][Full Text] [Related]
26. Temporal shifts in root exudates driven by vegetation restoration alter rhizosphere microbiota in Robinia pseudoacacia plantations. Li J; Fan M; Yang L; Yang Z; Shangguan Z Tree Physiol; 2023 Jul; 43(7):1081-1091. PubMed ID: 36912478 [TBL] [Abstract][Full Text] [Related]
27. Natural variation in root exudation of GABA and DIMBOA impacts the maize root endosphere and rhizosphere microbiomes. Wang P; Lopes LD; Lopez-Guerrero MG; van Dijk K; Alvarez S; Riethoven JJ; Schachtman DP J Exp Bot; 2022 Aug; 73(14):5052-5066. PubMed ID: 35552399 [TBL] [Abstract][Full Text] [Related]
28. Bioactive diterpenoids impact the composition of the root-associated microbiome in maize (Zea mays). Murphy KM; Edwards J; Louie KB; Bowen BP; Sundaresan V; Northen TR; Zerbe P Sci Rep; 2021 Jan; 11(1):333. PubMed ID: 33431904 [TBL] [Abstract][Full Text] [Related]
29. Metabolic regulation of the maize rhizobiome by benzoxazinoids. Cotton TEA; Pétriacq P; Cameron DD; Meselmani MA; Schwarzenbacher R; Rolfe SA; Ton J ISME J; 2019 Jul; 13(7):1647-1658. PubMed ID: 30796337 [TBL] [Abstract][Full Text] [Related]
30. Poly-γ-glutamic acid promoted maize root development by affecting auxin signaling pathway and the abundance and diversity of rhizosphere microbial community. Ma H; Li P; Xiao N; Xia T BMC Plant Biol; 2022 Nov; 22(1):521. PubMed ID: 36352394 [TBL] [Abstract][Full Text] [Related]
31. Induced resistance in maize is based on organ-specific defence responses. Balmer D; de Papajewski DV; Planchamp C; Glauser G; Mauch-Mani B Plant J; 2013 Apr; 74(2):213-25. PubMed ID: 23302050 [TBL] [Abstract][Full Text] [Related]
32. Facilitating Growth of Maize ( Shi J; Zhao B; Zhao L; Zha Y; Yu X; Yu B; Luo L; Wu J; Yue E J Agric Food Chem; 2024 Feb; 72(7):3415-3426. PubMed ID: 38325817 [TBL] [Abstract][Full Text] [Related]
33. Rhizosphere microbial community structure at different maize plant growth stages and root locations. Cavaglieri L; Orlando J; Etcheverry M Microbiol Res; 2009; 164(4):391-9. PubMed ID: 17524636 [TBL] [Abstract][Full Text] [Related]
34. Root exudates: from plant to rhizosphere and beyond. Vives-Peris V; de Ollas C; Gómez-Cadenas A; Pérez-Clemente RM Plant Cell Rep; 2020 Jan; 39(1):3-17. PubMed ID: 31346716 [TBL] [Abstract][Full Text] [Related]
35. Plant secondary metabolite-dependent plant-soil feedbacks can improve crop yield in the field. Gfeller V; Waelchli J; Pfister S; Deslandes-Hérold G; Mascher F; Glauser G; Aeby Y; Mestrot A; Robert CAM; Schlaeppi K; Erb M Elife; 2023 Aug; 12():. PubMed ID: 37526647 [TBL] [Abstract][Full Text] [Related]
36. Inheritance of seed and rhizosphere microbial communities through plant-soil feedback and soil memory. Kong HG; Song GC; Ryu CM Environ Microbiol Rep; 2019 Aug; 11(4):479-486. PubMed ID: 31054200 [TBL] [Abstract][Full Text] [Related]
37. Effects of a humic acid and its size-fractions on the bacterial community of soil rhizosphere under maize (Zea mays L.). Puglisi E; Fragoulis G; Ricciuti P; Cappa F; Spaccini R; Piccolo A; Trevisan M; Crecchio C Chemosphere; 2009 Oct; 77(6):829-37. PubMed ID: 19712956 [TBL] [Abstract][Full Text] [Related]
38. Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. Glauser G; Marti G; Villard N; Doyen GA; Wolfender JL; Turlings TC; Erb M Plant J; 2011 Dec; 68(5):901-11. PubMed ID: 21838747 [TBL] [Abstract][Full Text] [Related]
39. Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. Yang Y; Wang N; Guo X; Zhang Y; Ye B PLoS One; 2017; 12(5):e0178425. PubMed ID: 28542542 [TBL] [Abstract][Full Text] [Related]
40. Enhanced removal of nitrate in the maize rhizosphere by plant growth-promoting Bacillus megaterium NCT-2, and its colonization pattern in response to nitrate. Chu S; Zhang D; Zhi Y; Wang B; Chi CP; Zhang D; Liu Y; Zhou P Chemosphere; 2018 Oct; 208():316-324. PubMed ID: 29883866 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]