BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30013615)

  • 1. Structure Optimization for Large Gene Networks Based on Greedy Strategy.
    Gómez-Vela F; Rodriguez-Baena DS; Vázquez-Noguera JL
    Comput Math Methods Med; 2018; 2018():9674108. PubMed ID: 30013615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks.
    Adabor ES; Acquaah-Mensah GK; Oduro FT
    J Biomed Inform; 2015 Feb; 53():27-35. PubMed ID: 25181467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene network coherence based on prior knowledge using direct and indirect relationships.
    Gómez-Vela F; Lagares JA; Díaz-Díaz N
    Comput Biol Chem; 2015 Jun; 56():142-51. PubMed ID: 25935118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heuristic approach to sparse approximation of gene regulatory networks.
    Andrecut M; Huang S; Kauffman SA
    J Comput Biol; 2008 Nov; 15(9):1173-86. PubMed ID: 18844584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of heuristics in clustering large biological networks.
    Shafin MK; Kabir KL; Ridwan I; Anannya TT; Karim RS; Hoque MM; Rahman MS
    Comput Biol Chem; 2015 Dec; 59 Pt A():28-36. PubMed ID: 26386663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural model of gene regulatory network: a survey on supportive meta-heuristics.
    Biswas S; Acharyya S
    Theory Biosci; 2016 Jun; 135(1-2):1-19. PubMed ID: 27048512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exact reconstruction of gene regulatory networks using compressive sensing.
    Chang YH; Gray JW; Tomlin CJ
    BMC Bioinformatics; 2014 Dec; 15(1):400. PubMed ID: 25495633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Regulatory Network Inferences Using a Maximum-Relevance and Maximum-Significance Strategy.
    Liu W; Zhu W; Liao B; Chen X
    PLoS One; 2016; 11(11):e0166115. PubMed ID: 27829000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the sparse reconstruction of gene networks.
    Andrecut M; Kauffman SA
    J Comput Biol; 2008; 15(1):21-30. PubMed ID: 18257675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new multi-scale method to reveal hierarchical modular structures in biological networks.
    Jiao QJ; Huang Y; Shen HB
    Mol Biosyst; 2016 Nov; 12(12):3724-3733. PubMed ID: 27783080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
    Doungpan N; Engchuan W; Chan JH; Meechai A
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):70. PubMed ID: 28117655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Computational Approach to Study Gene Expression Networks.
    Rubinstein A; Kassir Y
    Methods Mol Biol; 2017; 1471():325-334. PubMed ID: 28349406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing gene sets using discriminative random walks with restart on heterogeneous biological networks.
    Blatti C; Sinha S
    Bioinformatics; 2016 Jul; 32(14):2167-75. PubMed ID: 27153592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved method for completely uncertain biological network alignment.
    Shen B; Zhao M; Zhong W; He J
    Biomed Res Int; 2015; 2015():253854. PubMed ID: 26000284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GeRNet: a gene regulatory network tool.
    Dussaut JS; Gallo CA; Cravero F; Martínez MJ; Carballido JA; Ponzoni I
    Biosystems; 2017 Dec; 162():1-11. PubMed ID: 28860069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fast ranking algorithm for predicting gene functions in biomolecular networks.
    Re M; Mesiti M; Valentini G
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1812-8. PubMed ID: 23221088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient network querying method based on conditional random fields.
    Huang Q; Wu LY; Zhang XS
    Bioinformatics; 2011 Nov; 27(22):3173-8. PubMed ID: 21926127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal in silico target gene deletion through nonlinear programming for genetic engineering.
    Hong CC; Song M
    PLoS One; 2010 Feb; 5(2):e9331. PubMed ID: 20195367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-layered greedy network-growing algorithm: extension of greedy network-growing algorithm to multi-layered networks.
    Kamimura R
    Int J Neural Syst; 2004 Feb; 14(1):9-26. PubMed ID: 15034944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.