These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 30013967)

  • 1. Dynamic Surface Wetting and Heat Transfer in a Droplet-Particle System of Less Than Unity Size Ratio.
    Mitra S; Evans G
    Front Chem; 2018; 6():259. PubMed ID: 30013967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.
    Briones AM; Ervin JS; Putnam SA; Byrd LW; Gschwender L
    Langmuir; 2010 Aug; 26(16):13272-86. PubMed ID: 20695569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet Boiling on Micro-Pillar Array Surface ─ Transition Boiling Regime.
    Wang T; Hu Z; Shen S; Liang G
    Langmuir; 2023 Dec; 39(48):17392-17411. PubMed ID: 37988628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet impingement dynamics: effect of surface temperature during boiling and non-boiling conditions.
    Shen J; Liburdy JA; Pence DV; Narayanan V
    J Phys Condens Matter; 2009 Nov; 21(46):464133. PubMed ID: 21715897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drop impact on natural porous stones.
    Lee JB; Derome D; Carmeliet J
    J Colloid Interface Sci; 2016 May; 469():147-156. PubMed ID: 26874980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.
    Liu H; Ju Y; Wang N; Xi G; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximum Spreading and Rebound of a Droplet Impacting onto a Spherical Surface at Low Weber Numbers.
    Bordbar A; Taassob A; Khojasteh D; Marengo M; Kamali R
    Langmuir; 2018 May; 34(17):5149-5158. PubMed ID: 29633848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Film levitation and central jet of droplet impact on nanotube surface at superheated conditions.
    Zhou D; Zhang Y; Hou Y; Zhong X; Jin J; Sun L
    Phys Rev E; 2020 Oct; 102(4-1):043108. PubMed ID: 33212652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Study of Diesel-Fuel Droplet Impact on a Similarly Sized Polished Spherical Heated Solid Particle.
    Jadidbonab H; Mitroglou N; Karathanassis I; Gavaises M
    Langmuir; 2018 Jan; 34(1):36-49. PubMed ID: 29172533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the dynamic impact behaviour of spray droplets on flat plant surfaces.
    Delele MA; Nuyttens D; Duga AT; Ambaw A; Lebeau F; Nicolai BM; Verboven P
    Soft Matter; 2016 Sep; 12(34):7195-211. PubMed ID: 27501228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drop rebound after impact: the role of the receding contact angle.
    Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M
    Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetting film stability and flotation kinetics.
    Ralston J; Dukhin SS; Mishchuk NA
    Adv Colloid Interface Sci; 2002 Feb; 95(2-3):145-236. PubMed ID: 11843192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Behavior of Droplet Impact on Laminar Superheated Particles.
    Jiao Y; Hu X; Zhu Y; Guo Y; Ji J; Du Y; Wang J; Liu X; Wang W; Liu K
    Langmuir; 2023 Aug; 39(33):11925-11933. PubMed ID: 37566515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capture and re-entrainment of microdroplets on fibers.
    Abishek S; Mead-Hunter R; King AJC; Mullins BJ
    Phys Rev E; 2019 Oct; 100(4-1):042803. PubMed ID: 31770884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet Wetting Propagation on a Hybrid-Wettability Surface.
    Wang T; Liang G; Li L; Zhou S; Shen S
    Langmuir; 2021 Oct; 37(39):11646-11656. PubMed ID: 34569245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding wetting dynamics and stability of aqueous droplet over superhydrophilic spot surrounded by superhydrophobic surface.
    Majhy B; Singh VP; Sen AK
    J Colloid Interface Sci; 2020 Apr; 565():582-591. PubMed ID: 31982724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet Bouncing and Breakup during Impact on a Microgrooved Surface.
    Malla LK; Patil ND; Bhardwaj R; Neild A
    Langmuir; 2017 Sep; 33(38):9620-9631. PubMed ID: 28846429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.