BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30014071)

  • 1. High-precision digital droplet pipetting enabled by a plug-and-play microfluidic pipetting chip.
    Mao Y; Pan Y; Li X; Li B; Chu J; Pan T
    Lab Chip; 2018 Sep; 18(18):2720-2729. PubMed ID: 30014071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-precision automated liquid pipetting device with an interchangeable tip.
    Yang X; Wang X; Li B; Chu J
    Rev Sci Instrum; 2023 Sep; 94(9):. PubMed ID: 37728420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dotette: Programmable, high-precision, plug-and-play droplet pipetting.
    Fan J; Men Y; Hao Tseng K; Ding Y; Ding Y; Villarreal F; Tan C; Li B; Pan T
    Biomicrofluidics; 2018 May; 12(3):034107. PubMed ID: 29861810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface acoustic wave enabled pipette on a chip.
    Sesen M; Devendran C; Malikides S; Alan T; Neild A
    Lab Chip; 2017 Jan; 17(3):438-447. PubMed ID: 27995242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically Controllable Microparticle Synthesis and Digital Microfluidic Manipulation by Electric-Field-Induced Droplet Dispensing into Immiscible Fluids.
    Um T; Hong J; Im do J; Lee SJ; Kang IS
    Sci Rep; 2016 Aug; 6():31901. PubMed ID: 27534580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pipette-operable microfluidic devices with hydrophobic valves in sequential dispensing with various liquid samples: multiplex disease assay by RT-LAMP.
    Chang YW; Lin JP; Ling SJ; Chen YC; Liu HM; Lu YW
    Lab Chip; 2024 Jun; 24(12):3112-3124. PubMed ID: 38758131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, microfabrication, and characterization of a moulded PDMS/SU-8 inkjet dispenser for a Lab-on-a-Printer platform technology with disposable microfluidic chip.
    Bsoul A; Pan S; Cretu E; Stoeber B; Walus K
    Lab Chip; 2016 Aug; 16(17):3351-61. PubMed ID: 27444216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital quantification of DNA via isothermal amplification on a self-driven microfluidic chip featuring hydrophilic film-coated polydimethylsiloxane.
    Ma YD; Chang WH; Luo K; Wang CH; Liu SY; Yen WH; Lee GB
    Biosens Bioelectron; 2018 Jan; 99():547-554. PubMed ID: 28823979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic cap-to-dispense (μCD): a universal microfluidic-robotic interface for automated pipette-free high-precision liquid handling.
    Wang J; Deng K; Zhou C; Fang Z; Meyer C; Deshpande KU; Li Z; Mi X; Luo Q; Hammock BD; Tan C; Chen Y; Pan T
    Lab Chip; 2019 Oct; 19(20):3405-3415. PubMed ID: 31501848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibiograms in five pipetting steps: precise dilution assays in sub-microliter volumes with a conventional pipette.
    Derzsi L; Kaminski TS; Garstecki P
    Lab Chip; 2016 Mar; 16(5):893-901. PubMed ID: 26805579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plug-in nanoliter pneumatic liquid dispenser with nozzle design flexibility.
    Choi IH; Kim H; Lee S; Baek S; Kim J
    Biomicrofluidics; 2015 Nov; 9(6):064102. PubMed ID: 26594263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated droplet-digital microfluidic system for on-demand droplet creation, mixing, incubation, and sorting.
    Ahmadi F; Samlali K; Vo PQN; Shih SCC
    Lab Chip; 2019 Jan; 19(3):524-535. PubMed ID: 30633267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A digital microfluidic method for multiplexed cell-based apoptosis assays.
    Bogojevic D; Chamberlain MD; Barbulovic-Nad I; Wheeler AR
    Lab Chip; 2012 Feb; 12(3):627-34. PubMed ID: 22159547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technologies and Applications in Micro-Volume Liquid Handling.
    He N; Liu T; Liu B
    J Nanosci Nanotechnol; 2016 Jan; 16(1):58-66. PubMed ID: 27398433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precise nanoliter fluid handling system with integrated high-speed flow sensor.
    Haber C; Boillat M; van der Schoot B
    Assay Drug Dev Technol; 2005 Apr; 3(2):203-12. PubMed ID: 15871694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision ejection of microfluidic droplets into air with a superhydrophobic outlet.
    Zhang P; Chang KC; Abate AR
    Lab Chip; 2021 Apr; 21(8):1484-1491. PubMed ID: 33656500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly addressable static droplet array enabling digital control of a single droplet at pico-volume resolution.
    Jeong HH; Lee B; Jin SH; Jeong SG; Lee CS
    Lab Chip; 2016 Apr; 16(9):1698-707. PubMed ID: 27075732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A programmable microfluidic static droplet array for droplet generation, transportation, fusion, storage, and retrieval.
    Jin SH; Jeong HH; Lee B; Lee SS; Lee CS
    Lab Chip; 2015; 15(18):3677-86. PubMed ID: 26247820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet-on-a-wristband: chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules.
    Fan SK; Yang H; Hsu W
    Lab Chip; 2011 Jan; 11(2):343-7. PubMed ID: 20957291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.