BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3001411)

  • 1. Effect of dehydroepiandrosterone on human erythrocytes redox metabolism: inhibition of glucose-6-phosphate dehydrogenase activity in vivo and in vitro.
    Niort G; Boccuzzi G; Brignardello E; Bonino L; Bosia A
    J Steroid Biochem; 1985 Nov; 23(5A):657-61. PubMed ID: 3001411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dehydroepiandrosterone effect on Plasmodium falciparum and its interaction with antimalarial drugs.
    Zuluaga L; Parra S; Garrido E; López-Muñoz R; Maya JD; Blair S
    Exp Parasitol; 2013 Jan; 133(1):114-20. PubMed ID: 23178659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect and mechanism of inhibiting glucose-6-phosphate dehydrogenase activity on the proliferation of Plasmodium falciparum.
    Zhang Z; Chen X; Jiang C; Fang Z; Feng Y; Jiang W
    Biochim Biophys Acta Mol Cell Res; 2017 May; 1864(5):771-781. PubMed ID: 28214533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DHEA prevents ribavirin-induced anemia via inhibition of glucose-6-phosphate dehydrogenase.
    Handala L; Domange B; Ouled-Haddou H; Garçon L; Nguyen-Khac E; Helle F; Bodeau S; Duverlie G; Brochot E
    Antiviral Res; 2017 Oct; 146():153-160. PubMed ID: 28890388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathways for the reduction of oxidized glutathione in the Plasmodium falciparum-infected erythrocyte: can parasite enzymes replace host red cell glucose-6-phosphate dehydrogenase?
    Roth EF; Schulman S; Vanderberg J; Olson J
    Blood; 1986 Mar; 67(3):827-30. PubMed ID: 3511989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Scott MD; Zuo L; Lubin BH; Chiu DT
    Blood; 1991 May; 77(9):2059-64. PubMed ID: 2018843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G6PD deficient cells and the bioreduction of disulfides: effects of DHEA, GSH depletion and phenylarsine oxide.
    Biaglow JE; Ayene IS; Koch CJ; Donahue J; Stamato TD; Tuttle SW
    Biochem Biophys Res Commun; 2000 Jul; 273(3):846-52. PubMed ID: 10891335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of glucose-6-phosphate dehydrogenase by lipopolysaccharide contributes to preventing nitric oxide-mediated glutathione depletion in cultured rat astrocytes.
    García-Nogales P; Almeida A; Fernández E; Medina JM; Bolaños JP
    J Neurochem; 1999 Apr; 72(4):1750-8. PubMed ID: 10098886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of glucose-6-phosphate dehydrogenase inhibition in the antiproliferative effects of dehydroepiandrosterone on human breast cancer cells.
    Di Monaco M; Pizzini A; Gatto V; Leonardi L; Gallo M; Brignardello E; Boccuzzi G
    Br J Cancer; 1997; 75(4):589-92. PubMed ID: 9052415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-proliferative action of endogenous dehydroepiandrosterone metabolites on human cancer cell lines.
    Yoshida S; Honda A; Matsuzaki Y; Fukushima S; Tanaka N; Takagiwa A; Fujimoto Y; Miyazaki H; Salen G
    Steroids; 2003 Jan; 68(1):73-83. PubMed ID: 12475725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dehydroepiandrosterone increased oxidative stress in a human cell line during differentiation.
    Izumo K; Horiuchi M; Komatsu M; Aoyama K; Bandow K; Matsuguchi T; Takeuchi M; Takeuchi T
    Free Radic Res; 2009 Oct; 43(10):922-31. PubMed ID: 19680996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversal by ribo- and deoxyribonucleosides of dehydroepiandrosterone-induced inhibition of enzyme altered foci in the liver of rats subjected to the initiation--selection process of experimental carcinogenesis.
    Garcea R; Daino L; Frassetto S; Cozzolino P; Ruggiu ME; Vannini MG; Pascale R; Lenzerini L; Simile MM; Puddu M
    Carcinogenesis; 1988 Jun; 9(6):931-8. PubMed ID: 2897255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of glucose-6-phosphate dehydrogenase on intracellular gsh level in Raji cells during oxidative stress].
    Zhang DT; Hu LH; Yang YZ
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2007 Nov; 23(4):487-90. PubMed ID: 21180140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic alterations after dehydroepiandrosterone treatment in Zucker rats.
    Shepherd A; Cleary MP
    Am J Physiol; 1984 Feb; 246(2 Pt 1):E123-8. PubMed ID: 6230014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribose metabolism and nucleic acid synthesis in normal and glucose-6-phosphate dehydrogenase-deficient human erythrocytes infected with Plasmodium falciparum.
    Roth EF; Ruprecht RM; Schulman S; Vanderberg J; Olson JA
    J Clin Invest; 1986 Apr; 77(4):1129-35. PubMed ID: 2420826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance.
    Tang HY; Ho HY; Wu PR; Chen SH; Kuypers FA; Cheng ML; Chiu DT
    Antioxid Redox Signal; 2015 Mar; 22(9):744-59. PubMed ID: 25556665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous determination of cell aging and ATP release from erythrocytes and its implications in type 2 diabetes.
    Subasinghe W; Spence DM
    Anal Chim Acta; 2008 Jun; 618(2):227-33. PubMed ID: 18513544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pro-oxidative effects of tea and polyphenols, epigallocatechin-3-gallate and epigallocatechin, on G6PD-deficient erythrocytes in vitro.
    Ko CH; Li K; Ng PC; Fung KP; Li CL; Wong RP; Chui KM; Gu GJ; Yung E; Wang CC; Fok TF
    Int J Mol Med; 2006 Nov; 18(5):987-94. PubMed ID: 17016632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-dependent detection of erythrocytes glucose-6-phosphate dehydrogenase and its correlation with oxidative stress.
    Maurya PK; Kumar P; Chandra P
    Arch Physiol Biochem; 2016; 122(2):61-6. PubMed ID: 26711700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pro-oxidative effects of Chinese herbal medicine on G6PD-deficient erythrocytes in vitro.
    Ko CH; Li K; Ng PC; Fung KP; Wong RP; Chui KM; Gu GJ; Yung E; Fok TF
    Toxicol In Vitro; 2008 Aug; 22(5):1222-7. PubMed ID: 18515042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.