These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30014264)

  • 1. Effect of Morphology and Crystal Structure on the Thermal Conductivity of Titania Nanotubes.
    Ali S; Orell O; Kanerva M; Hannula SP
    Nanoscale Res Lett; 2018 Jul; 13(1):212. PubMed ID: 30014264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal-structural relationship of individual titania nanotubes.
    Brahmi H; Katwal G; Khodadadi M; Chen S; Paulose M; Varghese OK; Mavrokefalos A
    Nanoscale; 2015 Dec; 7(45):19004-11. PubMed ID: 26512924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sub-amorphous thermal conductivity in ultrathin crystalline silicon nanotubes.
    Wingert MC; Kwon S; Hu M; Poulikakos D; Xiang J; Chen R
    Nano Lett; 2015 Apr; 15(4):2605-11. PubMed ID: 25758163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Titania nanotubes prepared by rapid breakdown anodization for photocatalytic decolorization of organic dyes under UV and natural solar light.
    Ali S; Granbohm H; Lahtinen J; Hannula SP
    Nanoscale Res Lett; 2018 Jun; 13(1):179. PubMed ID: 29900489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the phonon confinement effect and boundary scattering in reducing the thermal conductivity of argon nanowire.
    Tretiakov KV; Hyżorek K
    J Chem Phys; 2021 Feb; 154(5):054702. PubMed ID: 33557530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of crystalline phase changes in titania (TiO
    Zhang L; Liao X; Fok A; Ning C; Ng P; Wang Y
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():91-101. PubMed ID: 29025678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance.
    Regner KT; Sellan DP; Su Z; Amon CH; McGaughey AJ; Malen JA
    Nat Commun; 2013; 4():1640. PubMed ID: 23535661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Conductivity of Ultrahigh Molecular Weight Polyethylene Crystal: Defect Effect Uncovered by 0 K Limit Phonon Diffusion.
    Liu J; Xu Z; Cheng Z; Xu S; Wang X
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27279-88. PubMed ID: 26593380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic Mechanism of Tunable Thermal Conductivity in Carbon Nanotube-Geopolymer Nanocomposites.
    Liu W; Qin L; Zhao CY; Ju S
    J Phys Chem B; 2023 Mar; 127(10):2267-2276. PubMed ID: 36863008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape Dependent Thermal Conductivity of TiO2-Deionized Water and Ethylene Glycol Dispersion.
    Pal B; Mallick SS; Pal B
    J Nanosci Nanotechnol; 2015 May; 15(5):3670-6. PubMed ID: 26504990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-Nanostructure-Size-Limited Phonon Transport within Composite Films Made of Single-Wall Carbon Nanotubes and Reduced Graphene Oxides.
    Chen Q; Yan X; Wu L; Xiao Y; Wang S; Cheng G; Zheng R; Hao Q
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5435-5444. PubMed ID: 33492119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes.
    Aliev AE; Lima MH; Silverman EM; Baughman RH
    Nanotechnology; 2010 Jan; 21(3):035709. PubMed ID: 19966394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-step fabrication of highly stable amorphous TiO
    Santos JS; Fereidooni M; Marquez V; Arumugam M; Tahir M; Praserthdam S; Praserthdam P
    Chemosphere; 2022 Feb; 289():133170. PubMed ID: 34875298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unusually High and Anisotropic Thermal Conductivity in Amorphous Silicon Nanostructures.
    Kwon S; Zheng J; Wingert MC; Cui S; Chen R
    ACS Nano; 2017 Mar; 11(3):2470-2476. PubMed ID: 28117979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of mesoporous nitrogen-doped titania comprising large crystallites with low thermal conductivity.
    Shimasaki Y; Matsuno T; Guo Q; Shimojima A; Wada H; Mori T; Kuroda K
    Nanoscale Adv; 2022 May; 4(11):2509-2520. PubMed ID: 36134133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonon transport in the nano-system of Si and SiGe films with Ge nanodots and approach to ultralow thermal conductivity.
    Taniguchi T; Terada T; Komatsubara Y; Ishibe T; Konoike K; Sanada A; Naruse N; Mera Y; Nakamura Y
    Nanoscale; 2021 Mar; 13(9):4971-4977. PubMed ID: 33629704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bulk-like Intrinsic Phonon Thermal Conductivity of Micrometer-Thick AlN Films.
    Koh YR; Cheng Z; Mamun A; Bin Hoque MS; Liu Z; Bai T; Hussain K; Liao ME; Li R; Gaskins JT; Giri A; Tomko J; Braun JL; Gaevski M; Lee E; Yates L; Goorsky MS; Luo T; Khan A; Graham S; Hopkins PE
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29443-29450. PubMed ID: 32491824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thickness-dependent in-plane thermal conductivity of suspended MoS
    Bae JJ; Jeong HY; Han GH; Kim J; Kim H; Kim MS; Moon BH; Lim SC; Lee YH
    Nanoscale; 2017 Feb; 9(7):2541-2547. PubMed ID: 28150838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal conductivity of Bi
    Muñoz Rojo M; Abad B; Manzano CV; Torres P; Cartoixà X; Alvarez FX; Martín Gonzalez M
    Nanoscale; 2017 May; 9(20):6741-6747. PubMed ID: 28485423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter.
    Bifano MF; Kaul PB; Prakash V
    Nanotechnology; 2010 Jun; 21(23):235704. PubMed ID: 20472943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.