BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30014286)

  • 1. Toward Improving Safety in Neurosurgery with an Active Handheld Instrument.
    Moccia S; Foti S; Routray A; Prudente F; Perin A; Sekula RF; Mattos LS; Balzer JR; Fellows-Mayle W; De Momi E; Riviere CN
    Ann Biomed Eng; 2018 Oct; 46(10):1450-1464. PubMed ID: 30014286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time vessel segmentation and reconstruction for virtual fixtures for an active handheld microneurosurgical instrument.
    Venugopal A; Moccia S; Foti S; Routray A; MacLachlan RA; Perin A; Mattos LS; Yu AK; Leonardo J; De Momi E; N Riviere C
    Int J Comput Assist Radiol Surg; 2022 Jun; 17(6):1069-1077. PubMed ID: 35296950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing neurosurgery with image-guided robotics.
    Pandya S; Motkoski JW; Serrano-Almeida C; Greer AD; Latour I; Sutherland GR
    J Neurosurg; 2009 Dec; 111(6):1141-9. PubMed ID: 19374495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resection of Intracranial Tumors with a Robotic-Assisted Digital Microscope: A Preliminary Experience with Robotic Scope.
    Piloni M; Bailo M; Gagliardi F; Mortini P
    World Neurosurg; 2021 Aug; 152():e205-e211. PubMed ID: 34052450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Handheld-automated microsurgical instrumentation for intraocular laser surgery.
    Yang S; Lobes LA; Martel JN; Riviere CN
    Lasers Surg Med; 2015 Oct; 47(8):658-68. PubMed ID: 26287813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forces exerted during microneurosurgery: a cadaver study.
    Marcus HJ; Zareinia K; Gan LS; Yang FW; Lama S; Yang GZ; Sutherland GR
    Int J Med Robot; 2014 Jun; 10(2):251-6. PubMed ID: 24431265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot assisted stapedotomy ex vivo with an active handheld instrument.
    Vendrametto T; McAfee JS; Hirsch BE; Riviere CN; Ferrigno G; De Momi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4879-82. PubMed ID: 26737386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SmartArm: Integration and validation of a versatile surgical robotic system for constrained workspaces.
    Marinho MM; Harada K; Morita A; Mitsuishi M
    Int J Med Robot; 2020 Apr; 16(2):e2053. PubMed ID: 31677353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial experience with a robotically operated video optical telescopic-microscope in cranial neurosurgery: feasibility, safety, and clinical applications.
    Gonen L; Chakravarthi SS; Monroy-Sosa A; Celix JM; Kojis N; Singh M; Jennings J; Fukui MB; Rovin RA; Kassam AB
    Neurosurg Focus; 2017 May; 42(5):E9. PubMed ID: 28463622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward robot-assisted neurosurgical lasers.
    Motkoski JW; Yang FW; Lwu SH; Sutherland GR
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):892-8. PubMed ID: 23047855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Exoscope System in Neurosurgery-Comparison of a Standard Operating Microscope With a New 3D Exoscope in the Cadaver Lab.
    Herlan S; Marquardt JS; Hirt B; Tatagiba M; Ebner FH
    Oper Neurosurg (Hagerstown); 2019 Nov; 17(5):518-524. PubMed ID: 31140555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical requirements on magnification systems for intracranial video microsurgery.
    Ebner FH; Marquardt JS; Hirt B; Tatagiba M; Duffner F
    Microsurgery; 2011 Oct; 31(7):559-63. PubMed ID: 21882240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two surgeons four-hand microneurosurgery with universal holder system: technical note.
    Zomorodi A; Fukushima T
    Neurosurg Rev; 2017 Jul; 40(3):523-526. PubMed ID: 28247122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haptic virtual fixture for robotic cardiac catheter navigation.
    Park JW; Choi J; Park Y; Sun K
    Artif Organs; 2011 Nov; 35(11):1127-31. PubMed ID: 22023171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hands-free Adjustment of the Microscope in Microneurosurgery.
    Khakhar R; You F; Chakkalakal D; Dobbelstein D; Picht T
    World Neurosurg; 2021 Apr; 148():e155-e163. PubMed ID: 33385607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid position/force control of an active handheld micromanipulator for membrane peeling.
    Wells TS; Yang S; MacLachlan RA; Lobes LA; Martel JN; Riviere CN
    Int J Med Robot; 2016 Mar; 12(1):85-95. PubMed ID: 25962836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From the microsurgical laboratory to the operating theatre.
    Yaşargil MG
    Acta Neurochir (Wien); 2005 May; 147(5):465-8. PubMed ID: 15821999
    [No Abstract]   [Full Text] [Related]  

  • 18. Microsurgery with or without Neuroendoscopy in Petroclival Meningiomas.
    Zhou QJ; Liu B; Geng DJ; Fu Q; Cheng XJ; Kadeer K; DU GJ; Wang YX; Luan XP
    Turk Neurosurg; 2015; 25(2):231-8. PubMed ID: 26014005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Vision-Based Microsurgical Skill Analysis in Neurosurgery Using Deep Learning: Development and Preclinical Validation.
    Davids J; Makariou SG; Ashrafian H; Darzi A; Marcus HJ; Giannarou S
    World Neurosurg; 2021 May; 149():e669-e686. PubMed ID: 33588081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Master-slave robotic platform and its feasibility study for micro-neurosurgery.
    Mitsuishi M; Morita A; Sugita N; Sora S; Mochizuki R; Tanimoto K; Baek YM; Takahashi H; Harada K
    Int J Med Robot; 2013 Jun; 9(2):180-9. PubMed ID: 22588785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.