These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 30014631)

  • 1. [Influence of Acidosis on Electrophysiological Characteristics of Cortical GABAergic Neurons in Mice].
    Huang L; Wang C; Li Y; Zhao SD
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2018 May; 49(3):342-346. PubMed ID: 30014631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An impairment of cortical GABAergic neurons is involved in alkalosis-induced brain dysfunctions.
    Sun L; Zhang K; Li J; Liu D; Lu Y; Zhang Z
    Biochem Biophys Res Commun; 2012 Mar; 419(4):627-31. PubMed ID: 22369942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acidosis leads to brain dysfunctions through impairing cortical GABAergic neurons.
    Li F; Liu X; Su Z; Sun R
    Biochem Biophys Res Commun; 2011 Jul; 410(4):775-9. PubMed ID: 21693103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. More sensitivity of cortical GABAergic neurons than glutamatergic neurons in response to acidosis.
    Liu H; Li F; Wang C; Su Z
    Neuroreport; 2016 May; 27(8):610-6. PubMed ID: 27116702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo optogenetic stimulation of neocortical excitatory neurons drives brain-state-dependent inhibition.
    Mateo C; Avermann M; Gentet LJ; Zhang F; Deisseroth K; Petersen CC
    Curr Biol; 2011 Oct; 21(19):1593-602. PubMed ID: 21945274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acidosis leads to neurological disorders through overexciting cortical pyramidal neurons.
    Zhao H; Cai Y; Yang Z; He D; Shen B
    Biochem Biophys Res Commun; 2011 Nov; 415(2):224-8. PubMed ID: 21856290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical GABAergic neurons are more severely impaired by alkalosis than acidosis.
    Zhang S; Sun P; Sun Z; Zhang J; Zhou J; Gu Y
    BMC Neurol; 2013 Dec; 13():192. PubMed ID: 24314112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidosis and alkalosis impair brain functions through weakening spike encoding at cortical GABAergic neurons.
    Song R; Zhang L; Yang Z; Tian X
    J Neurol Sci; 2011 May; 304(1-2):122-6. PubMed ID: 21353681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ischemia deteriorates spike encoding at cortical GABAergic neurons and cerebellar Purkinje cells by increasing the intracellular Ca
    Huang L; Wang C; Ge R; Ni H; Zhao S
    Brain Res Bull; 2017 May; 131():55-61. PubMed ID: 28315396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of an extracellular acidosis on excitatory synaptic transmission and long-term potentiation in the CA1 region of rat hippocampal slices.
    Hsu KS; Liang YC; Huang CC
    J Neurosci Res; 2000 Nov; 62(3):403-15. PubMed ID: 11054810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidosis-Induced Dysfunction of Cortical GABAergic Neurons through Astrocyte-Related Excitotoxicity.
    Huang L; Zhao S; Lu W; Guan S; Zhu Y; Wang JH
    PLoS One; 2015; 10(10):e0140324. PubMed ID: 26474076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The physiological role of pre- and postsynaptic GABA(B) receptors in membrane excitability and synaptic transmission of neurons in the rat's dorsal cortex of the inferior colliculus.
    Sun H; Wu SH
    Neuroscience; 2009 Apr; 160(1):198-211. PubMed ID: 19409201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABA transporter 1 tunes GABAergic synaptic transmission at output neurons of the mouse neostriatum.
    Kirmse K; Dvorzhak A; Kirischuk S; Grantyn R
    J Physiol; 2008 Dec; 586(23):5665-78. PubMed ID: 18832421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-episode depression of GABAergic transmission in spinal neurons of the chick embryo.
    Chub N; O'Donovan MJ
    J Neurophysiol; 2001 May; 85(5):2166-76. PubMed ID: 11353031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiotensin II facilitates GABAergic neurotransmission at postsynaptic sites in rat amygdala neurons.
    Hu B; Qiao H; Cao T; Sun B; Luo X; Jia R; Fan Y; Wang N; Lu Y; Yan J
    Neuropharmacology; 2018 May; 133():334-344. PubMed ID: 29447844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acupuncture to point Baihui prevents ischemia-induced functional impairment of cortical GABAergic neurons.
    Zhang S; Li G; Xu X; Chang M; Zhang C; Sun F
    J Neurol Sci; 2011 Aug; 307(1-2):139-43. PubMed ID: 21570693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation by orexin A of spontaneous excitatory and inhibitory transmission in adult rat spinal substantia gelatinosa neurons.
    Wang C; Fujita T; Kumamoto E
    Biochem Biophys Res Commun; 2018 Jun; 501(1):100-105. PubMed ID: 29705705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane properties underlying patterns of GABA-dependent action potentials in developing mouse hypothalamic neurons.
    Wang YF; Gao XB; van den Pol AN
    J Neurophysiol; 2001 Sep; 86(3):1252-65. PubMed ID: 11535674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability of monosynaptic sensory transmission in brain stem neurons in vitro.
    Doyle MW; Andresen MC
    J Neurophysiol; 2001 May; 85(5):2213-23. PubMed ID: 11353036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative voltage and current-clamp analysis of feedback and feedforward synaptic transmission in the striatal microcircuit in vitro.
    Gustafson N; Gireesh-Dharmaraj E; Czubayko U; Blackwell KT; Plenz D
    J Neurophysiol; 2006 Feb; 95(2):737-52. PubMed ID: 16236782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.