These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 30014892)
1. The hydrolysis of 6-phosphogluconolactone in the second step of pentose phosphate pathway occurs via a two-water mechanism. Fatima T; Rani S; Fischer S; Efferth T; Kiani FA Biophys Chem; 2018 Sep; 240():98-106. PubMed ID: 30014892 [TBL] [Abstract][Full Text] [Related]
2. Effect of protonation on the mechanism of phosphate monoester hydrolysis and comparison with the hydrolysis of nucleoside triphosphate in biomolecular motors. Hassan HA; Rani S; Fatima T; Kiani FA; Fischer S Biophys Chem; 2017 Nov; 230():27-35. PubMed ID: 28941815 [TBL] [Abstract][Full Text] [Related]
3. 6-Phosphogluconolactonase is critical for the efficient functioning of the pentose phosphate pathway. Phégnon L; Pérochon J; Uttenweiler-Joseph S; Cahoreau E; Millard P; Létisse F FEBS J; 2024 Oct; 291(20):4459-4472. PubMed ID: 38982839 [TBL] [Abstract][Full Text] [Related]
4. Effects of protonation on the hydrolysis of triphosphate in vacuum and the implications for catalysis by nucleotide hydrolyzing enzymes. Kiani FA; Fischer S BMC Biochem; 2016 Jun; 17(1):12. PubMed ID: 27974044 [TBL] [Abstract][Full Text] [Related]
5. γ-6-Phosphogluconolactone, a Byproduct of the Oxidative Pentose Phosphate Pathway, Contributes to AMPK Activation through Inhibition of PP2A. Gao X; Zhao L; Liu S; Li Y; Xia S; Chen D; Wang M; Wu S; Dai Q; Vu H; Zacharias L; DeBerardinis R; Lim E; Metallo C; Boggon TJ; Lonial S; Lin R; Mao H; Pan Y; Shan C; Chen J Mol Cell; 2019 Dec; 76(6):857-871.e9. PubMed ID: 31586547 [TBL] [Abstract][Full Text] [Related]
6. Theoretical studies on the hydrolysis of mono-phosphate and tri-phosphate in gas phase and aqueous solution. Wang YN; Topol IA; Collins JR; Burt SK J Am Chem Soc; 2003 Oct; 125(43):13265-73. PubMed ID: 14570503 [TBL] [Abstract][Full Text] [Related]
7. Reactivity of phosphate monoester monoanions in aqueous solution. 1. Quantum mechanical calculations support the existence of "anionic zwitterion" MeO(+)(H)PO(3)(2-) as a key intermediate in the dissociative hydrolysis of the methyl phosphate anion. Bianciotto M; Barthelat JC; Vigroux A J Am Chem Soc; 2002 Jun; 124(25):7573-87. PubMed ID: 12071768 [TBL] [Abstract][Full Text] [Related]
8. NMR spectroscopic analysis of the first two steps of the pentose-phosphate pathway elucidates the role of 6-phosphogluconolactonase. Miclet E; Stoven V; Michels PA; Opperdoes FR; Lallemand JY; Duffieux F J Biol Chem; 2001 Sep; 276(37):34840-6. PubMed ID: 11457850 [TBL] [Abstract][Full Text] [Related]
9. Insights into the enzymatic mechanism of 6-phosphogluconolactonase from Trypanosoma brucei using structural data and molecular dynamics simulation. Duclert-Savatier N; Poggi L; Miclet E; Lopes P; Ouazzani J; Chevalier N; Nilges M; Delarue M; Stoven V J Mol Biol; 2009 May; 388(5):1009-21. PubMed ID: 19345229 [TBL] [Abstract][Full Text] [Related]
10. Minimum energy reaction profiles for ATP hydrolysis in myosin. Grigorenko BL; Kaliman IA; Nemukhin AV J Mol Graph Model; 2011 Nov; 31():1-4. PubMed ID: 21839658 [TBL] [Abstract][Full Text] [Related]
11. New insights into the mechanism of the Schiff base hydrolysis catalyzed by type I dehydroquinate dehydratase from S. enterica: a theoretical study. Yao Y; Li ZS Org Biomol Chem; 2012 Sep; 10(35):7037-44. PubMed ID: 22847490 [TBL] [Abstract][Full Text] [Related]
12. Theoretical studies on the hydrolysis mechanism of N-(2-oxo-1,2-dihydro-pyrimidinyl) formamide. Wu Y; Xue Y; Xie DQ; Kim CK; Yan GS J Phys Chem B; 2007 Mar; 111(9):2357-64. PubMed ID: 17295531 [TBL] [Abstract][Full Text] [Related]
13. Aminolysis of a model nerve agent: a computational reaction mechanism study of O,S-dimethyl methylphosphonothiolate. Mandal D; Sen K; Das AK J Phys Chem A; 2012 Aug; 116(32):8382-96. PubMed ID: 22830557 [TBL] [Abstract][Full Text] [Related]
14. A theoretical study on the hydrolysis mechanism of carbon disulfide. Ling L; Zhang R; Han P; Wang B J Mol Model; 2012 Apr; 18(4):1625-32. PubMed ID: 21805128 [TBL] [Abstract][Full Text] [Related]
15. The time required for water attack at the phosphorus atom of simple phosphodiesters and of DNA. Schroeder GK; Lad C; Wyman P; Williams NH; Wolfenden R Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4052-5. PubMed ID: 16537483 [TBL] [Abstract][Full Text] [Related]
16. Theoretical Proposal for the Whole Phosphate Diester Hydrolysis Mechanism Promoted by a Catalytic Promiscuous Dinuclear Copper(II) Complex. Esteves LF; Rey NA; Dos Santos HF; Costa LA Inorg Chem; 2016 Mar; 55(6):2806-18. PubMed ID: 26934384 [TBL] [Abstract][Full Text] [Related]
17. Molecular explorations of the Leishmania donovani 6-phosphogluconolactonase enzyme, a key player in the pentose phosphate pathway. Dhumal TT; Kumar R; Paul A; Roy PK; Garg P; Singh S Biochimie; 2022 Nov; 202():212-225. PubMed ID: 36037881 [TBL] [Abstract][Full Text] [Related]
18. Water-assisted reaction mechanism of monozinc beta-lactamases. Dal Peraro M; Llarrull LI; Rothlisberger U; Vila AJ; Carloni P J Am Chem Soc; 2004 Oct; 126(39):12661-8. PubMed ID: 15453800 [TBL] [Abstract][Full Text] [Related]
19. Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: a density functional theory study. Gao H; Ke Z; DeYonker NJ; Wang J; Xu H; Mao ZW; Phillips DL; Zhao C J Am Chem Soc; 2011 Mar; 133(9):2904-15. PubMed ID: 21319769 [TBL] [Abstract][Full Text] [Related]
20. Comparing the catalytic strategy of ATP hydrolysis in biomolecular motors. Kiani FA; Fischer S Phys Chem Chem Phys; 2016 Jul; 18(30):20219-33. PubMed ID: 27296627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]