These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30014914)

  • 1. Natural attenuation of TiO
    Ollivier P; Pauwels H; Wille G; Devau N; Braibant G; Cary L; Picot-Colbeaux G; Labille J
    J Hazard Mater; 2018 Oct; 359():47-55. PubMed ID: 30014914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for TiO2 nanoparticle transfer in a hard-rock aquifer.
    Cary L; Pauwels H; Ollivier P; Picot G; Leroy P; Mougin B; Braibant G; Labille J
    J Contam Hydrol; 2015 Aug; 179():148-59. PubMed ID: 26140852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms.
    Chen G; Liu X; Su C
    Langmuir; 2011 May; 27(9):5393-402. PubMed ID: 21446737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of silver nanoparticles in single fractured sandstone.
    Neukum C
    J Contam Hydrol; 2018 Feb; 209():61-67. PubMed ID: 29396180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do natural biofilm impact nZVI mobility and interactions with porous media? A column study.
    Crampon M; Hellal J; Mouvet C; Wille G; Michel C; Wiener A; Braun J; Ollivier P
    Sci Total Environ; 2018 Jan; 610-611():709-719. PubMed ID: 28822938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.
    Goode DJ; Imbrigiotta TE; Lacombe PJ
    J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media.
    Solovitch N; Labille J; Rose J; Chaurand P; Borschneck D; Wiesner MR; Bottero JY
    Environ Sci Technol; 2010 Jul; 44(13):4897-902. PubMed ID: 20524647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review.
    Babakhani P; Bridge J; Doong RA; Phenrat T
    Adv Colloid Interface Sci; 2017 Aug; 246():75-104. PubMed ID: 28641812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Surface Functional Groups on Deposition and Release of TiO
    Wang Z; Wang X; Zhang J; Yu X; Wu Z
    Environ Sci Technol; 2017 Jul; 51(13):7467-7475. PubMed ID: 28602072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of pH and ionic strength in the aggregation of TiO
    Lin D; Story SD; Walker SL; Huang Q; Liang W; Cai P
    Environ Pollut; 2017 Sep; 228():35-42. PubMed ID: 28511037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 17β-estradiol on stability and mobility of TiO2 rutile nanoparticles.
    Lee J; Bartelt-Hunt SL; Li Y; Morton M
    Sci Total Environ; 2015 Apr; 511():195-202. PubMed ID: 25544338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between polybrominated diphenyl ethers (PBDEs) and TiO
    Wang X; Adeleye AS; Wang H; Zhang M; Liu M; Wang Y; Li Y; Keller AA
    Water Res; 2018 Dec; 146():98-108. PubMed ID: 30236469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and retention of engineered Al2O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks.
    Bayat AE; Junin R; Shamshirband S; Chong WT
    Sci Rep; 2015 Sep; 5():14264. PubMed ID: 26373598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TiO₂ nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions.
    Esfandyari Bayat A; Junin R; Derahman MN; Samad AA
    Chemosphere; 2015 Sep; 134():7-15. PubMed ID: 25889359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of unsaturated flow and solute transport through waste rock at two experimental scales using temporal moments and numerical modeling.
    Blackmore S; Smith L; Ulrich Mayer K; Beckie RD
    J Contam Hydrol; 2014 Dec; 171():49-65. PubMed ID: 25461887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulated leaching of metalloids along 3D-printed fractured rock vadose zone.
    Wang L; Guo J; Wang H; Luo J; Hou D
    Water Res; 2022 Nov; 226():119224. PubMed ID: 36265423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the effects of water content on TiO2 nanoparticles transport in porous media.
    Toloni I; Lehmann F; Ackerer P
    J Contam Hydrol; 2016 Aug; 191():76-87. PubMed ID: 27281313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of charge and agglomeration behavior of TiO₂ nanoparticles in ecotoxicological media.
    Nur Y; Lead JR; Baalousha M
    Sci Total Environ; 2015 Dec; 535():45-53. PubMed ID: 25432129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation.
    Pierce AA; Chapman SW; Zimmerman LK; Hurley JC; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2018 May; 212():96-114. PubMed ID: 29530334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.