These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30014919)

  • 41. Catalytic degradation of picric acid by heterogeneous Fenton-based processes.
    Dulova N; Trapido M; Dulov A
    Environ Technol; 2011; 32(3-4):439-46. PubMed ID: 21780711
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Magnetite/Fe-Al-montmorillonite as a Fenton catalyst with efficient degradation of phenol.
    Wei X; Wu H; Sun F
    J Colloid Interface Sci; 2017 Oct; 504():611-619. PubMed ID: 28618380
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite.
    Iurascu B; Siminiceanu I; Vione D; Vicente MA; Gil A
    Water Res; 2009 Mar; 43(5):1313-22. PubMed ID: 19138784
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient degradation of sulfamethoxazole by catalytic wet peroxide oxidation with sludge-derived carbon as catalysts.
    Yu Y; Huang F; He Y; Wang F; Lv Y; Xu Y; Zhang Y
    Environ Technol; 2020 Mar; 41(7):870-877. PubMed ID: 30139300
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Degradation and mineralization of phenol compounds with goethite catalyst and mineralization prediction using artificial intelligence.
    Tisa F; Davoody M; Abdul Raman AA; Daud WM
    PLoS One; 2015; 10(4):e0119933. PubMed ID: 25849556
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Complete degradation of ciprofloxacin over g-C
    Ding Q; Lam FLY; Hu X
    J Environ Manage; 2019 Aug; 244():23-32. PubMed ID: 31108307
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recycling iron from pickling sludge to activate peroxydisulfate for the degradation of phenol.
    Yang S; Wang D; Xue G; Wang L; Duan X; Gong C
    Water Sci Technol; 2022 Apr; 85(8):2332-2349. PubMed ID: 35486458
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fe-exchanged zeolite as the effective heterogeneous Fenton-type catalyst for the organic pollutant minimization: UV irradiation assistance.
    Kusić H; Koprivanac N; Selanec I
    Chemosphere; 2006 Sep; 65(1):65-73. PubMed ID: 16600328
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phenol degradation by Fenton-like process.
    Sarmento AP; Borges AC; de Matos AT; Romualdo LL
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18429-38. PubMed ID: 27287488
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Removal of rhodamine B dye from aqueous solution by electro-Fenton process using iron-doped mesoporous silica as a heterogeneous catalyst.
    Jinisha R; Gandhimathi R; Ramesh ST; Nidheesh PV; Velmathi S
    Chemosphere; 2018 Jun; 200():446-454. PubMed ID: 29501035
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mathematical modelling of MS2 virus inactivation by Al/Fe-PILC-activated catalytic wet peroxide oxidation (CWPO).
    Ibarguen-Mondragon E; Revelo-Romo D; Hidalgo A; García H; Galeano LA
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):19836-19844. PubMed ID: 32221833
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite.
    Catrinescu C; Teodosiu C; Macoveanu M; Miehe-Brendlé J; Le Dred R
    Water Res; 2003 Mar; 37(5):1154-60. PubMed ID: 12553991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The synthesis of heterogeneous Fenton-like catalyst using sewage sludge biochar and its application for ciprofloxacin degradation.
    Li J; Pan L; Yu G; Xie S; Li C; Lai D; Li Z; You F; Wang Y
    Sci Total Environ; 2019 Mar; 654():1284-1292. PubMed ID: 30841401
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conversion of Fe-rich waste sludge into nano-flake Fe-SC hybrid Fenton-like catalyst for degradation of AOII.
    Kong L; Zhu Y; Liu M; Chang X; Xiong Y; Chen D
    Environ Pollut; 2016 Sep; 216():568-574. PubMed ID: 27321882
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol.
    Calleja G; Melero JA; Martínez F; Molina R
    Water Res; 2005 May; 39(9):1741-50. PubMed ID: 15899272
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Degradation of Orange G by Fenton-like reaction with Fe-impregnated biochar catalyst.
    Park JH; Wang JJ; Xiao R; Tafti N; DeLaune RD; Seo DC
    Bioresour Technol; 2018 Feb; 249():368-376. PubMed ID: 29055213
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor.
    Yang S; Zhu W; Wang J; Chen Z
    J Hazard Mater; 2008 May; 153(3):1248-53. PubMed ID: 17980483
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced removal of ibuprofen by heterogeneous photo-Fenton-like process over sludge-based Fe
    Liu Y; Zheng X; Zhang S; Sun S
    Water Sci Technol; 2022 Jan; 85(1):291-304. PubMed ID: 35050884
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synergistic effects in iron-copper bimetal doped mesoporous γ-Al
    Huang Z; Chen Z; Chen Y; Hu Y
    Chemosphere; 2018 Jul; 203():442-449. PubMed ID: 29635155
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic.
    Chun J; Lee H; Lee SH; Hong SW; Lee J; Lee C; Lee J
    Chemosphere; 2012 Nov; 89(10):1230-7. PubMed ID: 22884493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.