BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30015018)

  • 41. The biochemical, nanomechanical and chemometric signatures of brain cancer.
    Abramczyk H; Imiela A
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():8-19. PubMed ID: 28688336
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anti-proliferative and cytotoxic activities of Allium autumnale P. H. Davis (Amaryllidaceae) on human breast cancer cell lines MCF-7 and MDA-MB-231.
    Isbilen O; Rizaner N; Volkan E
    BMC Complement Altern Med; 2018 Jan; 18(1):30. PubMed ID: 29370794
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative analysis of the cell-surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy.
    Wang Y; Xu C; Jiang N; Zheng L; Zeng J; Qiu C; Yang H; Xie S
    Scanning; 2016 Nov; 38(6):558-563. PubMed ID: 26750438
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Toward improving fine needle aspiration cytology by applying Raman microspectroscopy.
    Becker-Putsche M; Bocklitz T; Clement J; Rösch P; Popp J
    J Biomed Opt; 2013 Apr; 18(4):047001. PubMed ID: 23545854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coarse Raman and optical diffraction tomographic imaging enable label-free phenotyping of isogenic breast cancer cells of varying metastatic potential.
    Paidi SK; Shah V; Raj P; Glunde K; Pandey R; Barman I
    Biosens Bioelectron; 2021 Mar; 175():112863. PubMed ID: 33272866
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.
    Lee S; Chon H; Lee J; Ko J; Chung BH; Lim DW; Choo J
    Biosens Bioelectron; 2014 Jan; 51():238-43. PubMed ID: 23973735
    [TBL] [Abstract][Full Text] [Related]  

  • 47. AFM indentation study of breast cancer cells.
    Li QS; Lee GY; Ong CN; Lim CT
    Biochem Biophys Res Commun; 2008 Oct; 374(4):609-13. PubMed ID: 18656442
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Discrimination of normal, benign, and malignant breast tissues by Raman spectroscopy.
    Chowdary MV; Kumar KK; Kurien J; Mathew S; Krishna CM
    Biopolymers; 2006 Dec; 83(5):556-69. PubMed ID: 16897764
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Breast cancer detection based on serum sample surface enhanced Raman spectroscopy.
    Vargas-Obieta E; Martínez-Espinosa JC; Martínez-Zerega BE; Jave-Suárez LF; Aguilar-Lemarroy A; González-Solís JL
    Lasers Med Sci; 2016 Sep; 31(7):1317-24. PubMed ID: 27289243
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy.
    Jung GB; Huh JE; Lee HJ; Kim D; Lee GJ; Park HK; Lee JD
    Biomed Opt Express; 2018 Nov; 9(11):5703-5718. PubMed ID: 30460157
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differentiation of cancer cells in two-dimensional and three-dimensional breast cancer models by Raman spectroscopy.
    Damayanti NP; Fang Y; Parikh MR; Craig AP; Kirshner J; Irudayaraj J
    J Biomed Opt; 2013 Nov; 18(11):117008. PubMed ID: 24247810
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Raman Microscopy: Progress in Research on Cancer Cell Sensing.
    Elumalai S; Managó S; De Luca AC
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992464
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Determining the degree of chromosomal instability in breast cancer cells by atomic force microscopy.
    Wang B; Dong J; Yang F; Ju T; Wang J; Qu K; Wang Y; Tian Y; Wang Z
    Analyst; 2024 Mar; 149(7):1988-1997. PubMed ID: 38420857
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microfluidic chip for non-invasive analysis of tumor cells interaction with anti-cancer drug doxorubicin by AFM and Raman spectroscopy.
    Zhang H; Xiao L; Li Q; Qi X; Zhou A
    Biomicrofluidics; 2018 Mar; 12(2):024119. PubMed ID: 29755636
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modern Raman imaging: vibrational spectroscopy on the micrometer and nanometer scales.
    Opilik L; Schmid T; Zenobi R
    Annu Rev Anal Chem (Palo Alto Calif); 2013; 6():379-98. PubMed ID: 23772660
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Antiangiogenic 1-Aryl-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas Inhibit MCF-7 and MDA-MB-231 Human Breast Cancer Cell Lines Through PI3K/Akt and MAPK/Erk Pathways.
    Machado VA; Peixoto D; Queiroz MJ; Soares R
    J Cell Biochem; 2016 Dec; 117(12):2791-2799. PubMed ID: 27152982
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modulation of expression of heat shock proteins and apoptosis by Flueggea leucopyrus (Willd) decoction in three breast cancer phenotypes.
    Mendis AS; Thabrew I; Samarakoon SR; Tennekoon KH
    BMC Complement Altern Med; 2015 Nov; 15():404. PubMed ID: 26553005
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Raman microspectroscopy for probing the impact of a dietary antioxidant on human breast cancer cells.
    Medeiros PS; Batista de Carvalho AL; Ruano C; Otero JC; Marques MP
    Food Funct; 2016 Jun; 7(6):2800-10. PubMed ID: 27227510
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Uptake of 2-NBDG by human breast cancer cells in vitro].
    Hu H; Shan XH; Zhu W; Qian H; Xu WR; Wang YF
    Zhonghua Zhong Liu Za Zhi; 2010 Jul; 32(7):507-10. PubMed ID: 21029693
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Different Phases of Breast Cancer Cells: Raman Study of Immortalized, Transformed, and Invasive Cells.
    Chaturvedi D; Balaji SA; Bn VK; Ariese F; Umapathy S; Rangarajan A
    Biosensors (Basel); 2016 Nov; 6(4):. PubMed ID: 27916791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.