These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 30015101)
1. Combining excitation-emission matrix fluorescence spectroscopy, parallel factor analysis, cyclodextrin-modified micellar electrokinetic chromatography and partial least squares class-modelling for green tea characterization. Casale M; Pasquini B; Hooshyari M; Orlandini S; Mustorgi E; Malegori C; Turrini F; Ortiz MC; Sarabia LA; Furlanetto S J Pharm Biomed Anal; 2018 Sep; 159():311-317. PubMed ID: 30015101 [TBL] [Abstract][Full Text] [Related]
2. Chiral cyclodextrin-modified micellar electrokinetic chromatography and chemometric techniques for green tea samples origin discrimination. Pasquini B; Orlandini S; Goodarzi M; Caprini C; Gotti R; Furlanetto S Talanta; 2016 Apr; 150():7-13. PubMed ID: 26838375 [TBL] [Abstract][Full Text] [Related]
3. Chiral analysis of theanine and catechin in characterization of green tea by cyclodextrin-modified micellar electrokinetic chromatography and high performance liquid chromatography. Fiori J; Pasquini B; Caprini C; Orlandini S; Furlanetto S; Gotti R J Chromatogr A; 2018 Aug; 1562():115-122. PubMed ID: 29859684 [TBL] [Abstract][Full Text] [Related]
4. Electronic nose and chiral-capillary electrophoresis in evaluation of the quality changes in commercial green tea leaves during a long-term storage. Mirasoli M; Gotti R; Di Fusco M; Leoni A; Colliva C; Roda A Talanta; 2014 Nov; 129():32-8. PubMed ID: 25127562 [TBL] [Abstract][Full Text] [Related]
5. Determination of catechins in matcha green tea by micellar electrokinetic chromatography. Weiss DJ; Anderton CR J Chromatogr A; 2003 Sep; 1011(1-2):173-80. PubMed ID: 14518774 [TBL] [Abstract][Full Text] [Related]
6. Analysis of catechins and caffeine in tea extracts by micellar electrokinetic chromatography. Wörth CC; Wiessler M; Schmitz OJ Electrophoresis; 2000 Nov; 21(17):3634-8. PubMed ID: 11271481 [TBL] [Abstract][Full Text] [Related]
7. Fast determination of catechins and xanthines in tea beverages by micellar electrokinetic chromatography. Bonoli M; Colabufalo P; Pelillo M; Gallina Toschi T; Lercker G J Agric Food Chem; 2003 Feb; 51(5):1141-7. PubMed ID: 12590448 [TBL] [Abstract][Full Text] [Related]
8. Decrease in concentration of free catechins in tea over time determined by micellar electrokinetic chromatography. Stach D; Schmitz OJ J Chromatogr A; 2001 Jul; 924(1-2):519-22. PubMed ID: 11521904 [TBL] [Abstract][Full Text] [Related]
9. Differentiation of green tea samples by chiral CD-MEKC analysis of catechins content. Gotti R; Furlanetto S; Lanteri S; Olmo S; Ragaini A; Cavrini V Electrophoresis; 2009 Aug; 30(16):2922-30. PubMed ID: 19637216 [TBL] [Abstract][Full Text] [Related]
10. Classification of Maojian teas from different geographical origins by micellar electrokinetic chromatography and pattern recognition techniques. Ye N; Zhang L; Gu X Anal Sci; 2011; 27(7):765. PubMed ID: 21747187 [TBL] [Abstract][Full Text] [Related]
11. Direct enantioseparation of catechin and epicatechin in tea drinks by 6-O-alpha-D-glucosyl-beta-cyclodextrin-modified micellar electrokinetic chromatography. Kodama S; Yamamoto A; Matsunaga A; Yanai H Electrophoresis; 2004 Aug; 25(16):2892-8. PubMed ID: 15352024 [TBL] [Abstract][Full Text] [Related]
12. Analysis of green tea extract dietary supplements by micellar electrokinetic chromatography. Weiss DJ; Austria EJ; Anderton CR; Hompesch R; Jander A J Chromatogr A; 2006 Jun; 1117(1):103-8. PubMed ID: 16600259 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous determination of amino acids in tea leaves by micellar electrokinetic chromatography with laser-induced fluorescence detection. Yan J; Cai Y; Wang Y; Lin X; Li H Food Chem; 2014 Jan; 143():82-9. PubMed ID: 24054216 [TBL] [Abstract][Full Text] [Related]
14. Alkyl imidazolium ionic liquid based sweeping-micellar electrokinetic chromatography for simultaneous determination of seven tea catechins in human plasma. El-Hady DA; Albishri HM J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Oct; 969():224-9. PubMed ID: 25195023 [TBL] [Abstract][Full Text] [Related]
15. Separation of doxorubicin and doxorubicinol by cyclodextrin-modified micellar electrokinetic capillary chromatography. Eder AR; Chen JS; Arriaga EA Electrophoresis; 2006 Aug; 27(16):3263-70. PubMed ID: 16915573 [TBL] [Abstract][Full Text] [Related]
16. Methyl-beta-cyclodextrin modified micellar electrokinetic capillary chromatography with laser-induced fluorescence for separation and detection of phospholipids. Le Zhang ; Krylov SN; Hu S; Dovichi NJ J Chromatogr A; 2000 Oct; 894(1-2):129-34. PubMed ID: 11100855 [TBL] [Abstract][Full Text] [Related]
17. Estimation of tea catechin levels using micellar electrokinetic chromatography: a quantitative approach. Liu CM; Chen CY; Lin YW Food Chem; 2014 May; 150():145-50. PubMed ID: 24360431 [TBL] [Abstract][Full Text] [Related]
18. Multiway analysis methods applied to the fluorescence excitation-emission dataset for the simultaneous quantification of valsartan and amlodipine in tablets. Dinç E; Ertekin ZC; Büker E Spectrochim Acta A Mol Biomol Spectrosc; 2017 Sep; 184():255-261. PubMed ID: 28514719 [TBL] [Abstract][Full Text] [Related]
19. Analysis of catechins in Theobroma cacao beans by cyclodextrin-modified micellar electrokinetic chromatography. Gotti R; Furlanetto S; Pinzauti S; Cavrini V J Chromatogr A; 2006 Apr; 1112(1-2):345-52. PubMed ID: 16337214 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence spectroscopy and multivariate methods for the determination of brandy adulteration with mixed wine spirit. Markechová D; Májek P; Sádecká J Food Chem; 2014 Sep; 159():193-9. PubMed ID: 24767044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]