BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 30015185)

  • 1. Impacts of silicon addition on arsenic fractionation in soils and arsenic speciation in Panax notoginseng planted in soils contaminated with high levels of arsenic.
    Yang Y; Zhang A; Chen Y; Liu J; Cao H
    Ecotoxicol Environ Saf; 2018 Oct; 162():400-407. PubMed ID: 30015185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of arsenic speciation and the possible source of methylated arsenic in Panax Notoginseng.
    Zhu M; Zeng X; Jiang Y; Fan X; Chao S; Cao H; Zhang W
    Chemosphere; 2017 Feb; 168():1677-1683. PubMed ID: 27932037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction, methylation, and translocation of arsenic in Panax notoginseng grown under field conditions in arsenic-contaminated soils.
    Ma J; Mi Y; Li Q; Chen L; Du L; He L; Lei M
    Sci Total Environ; 2016 Apr; 550():893-899. PubMed ID: 26851761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice.
    Zhao FJ; Harris E; Yan J; Ma J; Wu L; Liu W; McGrath SP; Zhou J; Zhu YG
    Environ Sci Technol; 2013 Jul; 47(13):7147-54. PubMed ID: 23750559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic accumulation and resistance mechanism in Panax notoginseng, a traditional rare medicinal herb.
    Yan XL; Lin LY; Liao XY; Zhang WB
    Chemosphere; 2012 Mar; 87(1):31-6. PubMed ID: 22189375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic stabilization by zero-valent iron, bauxite residue, and zeolite at a contaminated site planting Panax notoginseng.
    Yan XL; Lin LY; Liao XY; Zhang WB; Wen Y
    Chemosphere; 2013 Oct; 93(4):661-7. PubMed ID: 23871591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Accumulation of soil arsenic by Panax notoginseng and its associated health risk].
    Yan XL; Liao XY; Yu BB; Zhang WB
    Huan Jing Ke Xue; 2011 Mar; 32(3):880-5. PubMed ID: 21634192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do Si/As ratios in growth medium affect arsenic uptake, arsenite efflux and translocation of arsenite in rice (Oryza sativa)?
    Zhang M; Zhao Q; Xue P; Zhang S; Li B; Liu W
    Environ Pollut; 2017 Oct; 229():647-654. PubMed ID: 28689153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pesticide residues in soils planted with Panax notoginseng in south China, and their relationships in Panax notoginseng and soil.
    Zhao L; Li Y; Ren W; Huang Y; Wang X; Fu Z; Ma W; Teng Y; Luo Y
    Ecotoxicol Environ Saf; 2020 Sep; 201():110783. PubMed ID: 32534333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon-rich amendments in rice paddies: Effects on arsenic uptake and biogeochemistry.
    Limmer MA; Mann J; Amaral DC; Vargas R; Seyfferth AL
    Sci Total Environ; 2018 May; 624():1360-1368. PubMed ID: 29929248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Si-induced DMA desorption is not the driver for enhanced DMA availability after Si addition to flooded soils.
    Dykes GE; Chari NR; Seyfferth AL
    Sci Total Environ; 2020 Oct; 739():139906. PubMed ID: 32758940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants.
    Anawar HM; Rengel Z; Damon P; Tibbett M
    Environ Pollut; 2018 Feb; 233():1003-1012. PubMed ID: 29033177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic speciation driving risk based corrective action.
    Marlborough SJ; Wilson VL
    Sci Total Environ; 2015 Jul; 520():253-9. PubMed ID: 25817762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of oxalate and phosphate on the release of arsenic from contaminated soils and arsenic accumulation in wheat.
    Tao Y; Zhang S; Jian W; Yuan C; Shan XQ
    Chemosphere; 2006 Nov; 65(8):1281-7. PubMed ID: 16750554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of application of silicon on arsenic uptake by rice seedlings in soil].
    Guo W; Zhu YG; Liang YC; Liu WJ; Chen Z
    Huan Jing Ke Xue; 2006 Jul; 27(7):1393-7. PubMed ID: 16881316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of soil properties and phosphate addition on arsenic uptake from polluted soils by velvetgrass (Holcus lanatus).
    Lewińska K; Karczewska A
    Int J Phytoremediation; 2013; 15(1):91-104. PubMed ID: 23487988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus-arsenic interactions in variable-charge soils in relation to arsenic mobility and bioavailability.
    Bolan N; Mahimairaja S; Kunhikrishnan A; Choppala G
    Sci Total Environ; 2013 Oct; 463-464():1154-62. PubMed ID: 23639210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Silicon Application on Uptake of Arsenic and Phosphorus and Formation of Iron Plaque in Rice Seedlings Grown in an Arsenic-Contaminated Soil.
    Li R; Zhou Z; Xu X; Xie X; Zhang Q; Liu Y
    Bull Environ Contam Toxicol; 2019 Jul; 103(1):133-139. PubMed ID: 30666387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total and bioavailable arsenic concentration in arid soils and its uptake by native plants from the pre-Andean zones in Chile.
    Díaz O; Tapia Y; Pastene R; Montes S; Núñez N; Vélez D; Montoro R
    Bull Environ Contam Toxicol; 2011 Jun; 86(6):666-9. PubMed ID: 21484519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.