BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 30015185)

  • 21. A methodological approach to evaluate arsenic speciation and bioaccumulation in different plant species from two highly polluted mining areas.
    Larios R; Fernández-Martínez R; Lehecho I; Rucandio I
    Sci Total Environ; 2012 Jan; 414():600-7. PubMed ID: 22154482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reducing Arsenic Concentration in Panax notoginseng via Contaminant Immobilization in Soil Using Fe-Ce Oxide.
    Lin L; Zhong L; Yan X; Fei Y
    J Environ Qual; 2018 Mar; 47(2):312-317. PubMed ID: 29634792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arsenic speciation and distribution in an arsenic hyperaccumulating plant.
    Zhang W; Cai Y; Tu C; Ma LQ
    Sci Total Environ; 2002 Dec; 300(1-3):167-77. PubMed ID: 12685480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects.
    Abbas G; Murtaza B; Bibi I; Shahid M; Niazi NK; Khan MI; Amjad M; Hussain M;
    Int J Environ Res Public Health; 2018 Jan; 15(1):. PubMed ID: 29301332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal.
    Dahal BM; Fuerhacker M; Mentler A; Karki KB; Shrestha RR; Blum WE
    Environ Pollut; 2008 Sep; 155(1):157-63. PubMed ID: 18068879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of silicon (Si) on arsenic (As) accumulation and speciation in rice (Oryza sativa L.) genotypes with different radial oxygen loss (ROL).
    Wu C; Zou Q; Xue S; Mo J; Pan W; Lou L; Wong MH
    Chemosphere; 2015 Nov; 138():447-53. PubMed ID: 26171731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of external iron and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake in rice (Oryza sativa L.).
    Rahman MA; Rahman MM; Kadohashi K; Maki T; Hasegawa H
    Chemosphere; 2011 Jul; 84(4):439-45. PubMed ID: 21507453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure.
    Selamat SN; Abdullah SR; Idris M
    Int J Phytoremediation; 2014; 16(7-12):694-703. PubMed ID: 24933879
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sorption-bioavailability nexus of arsenic and cadmium in variable-charge soils.
    Bolan N; Mahimairaja S; Kunhikrishnan A; Naidu R
    J Hazard Mater; 2013 Oct; 261():725-32. PubMed ID: 23177243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iron plaque formed under aerobic conditions efficiently immobilizes arsenic in Lupinus albus L roots.
    Fresno T; Peñalosa JM; Santner J; Puschenreiter M; Prohaska T; Moreno-Jiménez E
    Environ Pollut; 2016 Sep; 216():215-222. PubMed ID: 27263113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of compost on the mobility of arsenic in soil and its uptake by bean plants (Phaseolus vulgaris L.) irrigated with arsenite-contaminated water.
    Caporale AG; Pigna M; Sommella A; Dynes JJ; Cozzolino V; Violante A
    J Environ Manage; 2013 Oct; 128():837-43. PubMed ID: 23872213
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal development of arsenic speciation and extractability in acidified and non-acidified paddy soil amended with silicon-rich fly ash and manganese- or zinc-oxides under flooded and drainage conditions.
    Wisawapipat W; Christl I; Bouchet S; Fang X; Chareonpanich M; Kretzschmar R
    Chemosphere; 2024 Mar; 351():141140. PubMed ID: 38190943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does ochre have the potential to be a remedial treatment for As-contaminated soils?
    Olimah JA; Shaw LJ; Hodson ME
    Environ Pollut; 2015 Nov; 206():150-8. PubMed ID: 26162334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mobility and fractionation of arsenic, chromium and copper in thermally treated soil.
    Nordmark D; Kumpiene J; Andreas L; Lagerkvist A
    Waste Manag Res; 2011 Jan; 29(1):3-12. PubMed ID: 20880937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of different cleaning treatments on heavy metal removal of Panax notoginseng (Burk) F. H. Chen.
    Dahui L; Na X; Li W; Xiuming C; Lanping G; Zhihui Z; Jiajin W; Ye Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(12):2004-13. PubMed ID: 25315359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of carbendazim residue in Panax notoginseng and soil.
    Wu J; Wei H; Sui X; Lin J; Wang T; Fen G; Xue J
    Bull Environ Contam Toxicol; 2010 Apr; 84(4):469-72. PubMed ID: 20306171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content.
    Dobran S; Zagury GJ
    Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiological and metabolomic analyses reveal that Fe
    Lu T; Wang X; Cui X; Li J; Xu J; Xu P; Wan J
    Environ Pollut; 2023 Nov; 337():122578. PubMed ID: 37726032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of EDTA in arsenic mobilization and its uptake by maize grown on an As-polluted soil.
    Abbas MH; Abdelhafez AA
    Chemosphere; 2013 Jan; 90(2):588-94. PubMed ID: 22990024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenic chemistry and remediation in Hawaiian soils.
    Hue NV
    Int J Phytoremediation; 2013; 15(2):105-16. PubMed ID: 23487989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.