BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30015232)

  • 21. Structure of the LarB-Substrate Complex and Identification of a Reaction Intermediate during Nickel-Pincer Nucleotide Cofactor Biosynthesis.
    Chatterjee S; Nevarez JL; Rankin JA; Hu J; Hausinger RP
    Biochemistry; 2023 Nov; 62(21):3096-3104. PubMed ID: 37831946
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system.
    Desguin B; Goffin P; Viaene E; Kleerebezem M; Martin-Diaconescu V; Maroney MJ; Declercq JP; Soumillion P; Hols P
    Nat Commun; 2014 Apr; 5():3615. PubMed ID: 24710389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ENZYMOLOGY. It costs more than a nickel.
    Zamble D
    Science; 2015 Jul; 349(6243):35-6. PubMed ID: 26138967
    [No Abstract]   [Full Text] [Related]  

  • 24. Irreversible inactivation of lactate racemase by sodium borohydride reveals reactivity of the nickel-pincer nucleotide cofactor.
    Gatreddi S; Sui D; Hausinger RP; Hu J
    ACS Catal; 2023 Jan; 13(2):1441-1448. PubMed ID: 37886035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the nickel-inserting cyclometallase LarC from Moorella thermoacetica and identification of a cytidinylylated reaction intermediate.
    Turmo A; Hu J; Hausinger RP
    Metallomics; 2022 Mar; 14(3):. PubMed ID: 35225337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New metal cofactors and recent metallocofactor insights.
    Hausinger RP
    Curr Opin Struct Biol; 2019 Dec; 59():1-8. PubMed ID: 30711735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enantioselective regulation of lactate racemization by LarR in Lactobacillus plantarum.
    Desguin B; Goffin P; Bakouche N; Diman A; Viaene E; Dandoy D; Fontaine L; Hallet B; Hols P
    J Bacteriol; 2015 Jan; 197(1):219-30. PubMed ID: 25349156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic properties of the metal ion variants of mandelate racemase reveal alterations in the apparent electrophilicity of the metal cofactor.
    Harty ML; Sharma AN; Bearne SL
    Metallomics; 2019 Mar; 11(3):707-723. PubMed ID: 30843025
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nickel-dependent metalloenzymes.
    Boer JL; Mulrooney SB; Hausinger RP
    Arch Biochem Biophys; 2014 Feb; 544():142-52. PubMed ID: 24036122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lactate racemization as a rescue pathway for supplying D-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum.
    Goffin P; Deghorain M; Mainardi JL; Tytgat I; Champomier-Vergès MC; Kleerebezem M; Hols P
    J Bacteriol; 2005 Oct; 187(19):6750-61. PubMed ID: 16166538
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic Engineering of Lactobacillus plantarum for Direct l-Lactic Acid Production From Raw Corn Starch.
    Okano K; Uematsu G; Hama S; Tanaka T; Noda H; Kondo A; Honda K
    Biotechnol J; 2018 May; 13(5):e1700517. PubMed ID: 29393585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of CntK, the cofactor-independent histidine racemase in staphylopine-mediated metal acquisition of Staphylococcus aureus.
    Luo S; Ju Y; Zhou J; Gu Q; Xu J; Zhou H
    Int J Biol Macromol; 2019 Aug; 135():725-733. PubMed ID: 31129210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Revealing the position of the substrate in nickel superoxide dismutase: a model study.
    Tietze D; Voigt S; Mollenhauer D; Tischler M; Imhof D; Gutmann T; González L; Ohlenschläger O; Breitzke H; Görlach M; Buntkowsky G
    Angew Chem Int Ed Engl; 2011 Mar; 50(13):2946-50. PubMed ID: 21404375
    [No Abstract]   [Full Text] [Related]  

  • 34. Nitric oxide S-nitrosylates serine racemase, mediating feedback inhibition of D-serine formation.
    Mustafa AK; Kumar M; Selvakumar B; Ho GP; Ehmsen JT; Barrow RK; Amzel LM; Snyder SH
    Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2950-5. PubMed ID: 17293453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Requirement of helix P2.2 and nucleotide G1 for positioning the cleavage site and cofactor of the glmS ribozyme.
    Klein DJ; Wilkinson SR; Been MD; Ferré-D'Amaré AR
    J Mol Biol; 2007 Oct; 373(1):178-89. PubMed ID: 17804015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hexacoordinate nickel(II)/(III) complexes that mimic the catalytic cycle of nickel superoxide dismutase.
    Chatterjee SK; Maji RC; Barman SK; Olmstead MM; Patra AK
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10184-9. PubMed ID: 25056843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for a glutamic acid racemase in Lactobacillus arabinosus.
    NARROD SA; WOOD WA
    Arch Biochem Biophys; 1952 Feb; 35(2):462-3. PubMed ID: 14924668
    [No Abstract]   [Full Text] [Related]  

  • 38. D-amino acids in the brain: the biochemistry of brain serine racemase.
    Baumgart F; Rodríguez-Crespo I
    FEBS J; 2008 Jul; 275(14):3538-45. PubMed ID: 18564178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utilization of D-glutamic acid by Lactobacillus arabinosus: glutamic racemase.
    AYENGAR P; ROBERTS E
    J Biol Chem; 1952 May; 197(1):453-60. PubMed ID: 12981075
    [No Abstract]   [Full Text] [Related]  

  • 40. Glutamic acid racemase from Lactobacillus arabinosus.
    GLASER L
    J Biol Chem; 1960 Jul; 235():2095-8. PubMed ID: 13828348
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.