These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 30015234)

  • 1. Nature's conductors: what can microbial multi-heme cytochromes teach us about electron transport and biological energy conversion?
    Chong GW; Karbelkar AA; El-Naggar MY
    Curr Opin Chem Biol; 2018 Dec; 47():7-17. PubMed ID: 30015234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of
    Fernandes AP; Nunes TC; Paquete CM; Salgueiro CA
    Biochem J; 2017 Feb; 474(5):797-808. PubMed ID: 28093471
    [No Abstract]   [Full Text] [Related]  

  • 3. Cytochromes in Extracellular Electron Transfer in
    Ueki T
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33741623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer and transport through multi-heme proteins: recent progress and future directions.
    Blumberger J
    Curr Opin Chem Biol; 2018 Dec; 47():24-31. PubMed ID: 30015233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromicrobiology: realities, grand challenges, goals and predictions.
    Nealson KH; Rowe AR
    Microb Biotechnol; 2016 Sep; 9(5):595-600. PubMed ID: 27506517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window.
    Firer-Sherwood M; Pulcu GS; Elliott SJ
    J Biol Inorg Chem; 2008 Aug; 13(6):849-54. PubMed ID: 18575901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities.
    Breuer M; Rosso KM; Blumberger J; Butt JN
    J R Soc Interface; 2015 Jan; 12(102):20141117. PubMed ID: 25411412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design of electron/proton transfer mechanisms in the exoelectrogenic bacteria Geobacter sulfurreducens.
    Silva MA; Portela PC; Salgueiro CA
    Biochem J; 2021 Jul; 478(14):2871-2887. PubMed ID: 34190983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosecond heme-to-heme electron transfer rates in a multiheme cytochrome nanowire reported by a spectrally unique His/Met-ligated heme.
    van Wonderen JH; Adamczyk K; Wu X; Jiang X; Piper SEH; Hall CR; Edwards MJ; Clarke TA; Zhang H; Jeuken LJC; Sazanovich IV; Towrie M; Blumberger J; Meech SR; Butt JN
    Proc Natl Acad Sci U S A; 2021 Sep; 118(39):. PubMed ID: 34556577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular interactions between Geobacter sulfurreducens triheme cytochromes and the redox active analogue for humic substances.
    Dantas JM; Ferreira MR; Catarino T; Kokhan O; Pokkuluri PR; Salgueiro CA
    Biochim Biophys Acta Bioenerg; 2018 Aug; 1859(8):619-630. PubMed ID: 29777686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial nanowires for bioenergy applications.
    Malvankar NS; Lovley DR
    Curr Opin Biotechnol; 2014 Jun; 27():88-95. PubMed ID: 24863901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells.
    Wu X; Zou L; Huang Y; Qiao Y; Long ZE; Liu H; Li CM
    Enzyme Microb Technol; 2018 Aug; 115():23-28. PubMed ID: 29859599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing.
    Zou L; Huang YH; Long ZE; Qiao Y
    World J Microbiol Biotechnol; 2018 Dec; 35(1):9. PubMed ID: 30569420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity.
    Wang Q; Jones AD; Gralnick JA; Lin L; Buie CR
    Sci Adv; 2019 Jan; 5(1):eaat5664. PubMed ID: 30746438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanisms of electron transfer to insoluble terminal acceptors in chemoorganotrophic bacteria].
    Samarukha IA
    Ukr Biochem J; 2014; 86(2):16-25. PubMed ID: 24868908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin-Dependent Electron Transport through Bacterial Cell Surface Multiheme Electron Conduits.
    Mishra S; Pirbadian S; Mondal AK; El-Naggar MY; Naaman R
    J Am Chem Soc; 2019 Dec; 141(49):19198-19202. PubMed ID: 31702906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative metatranscriptomics reveals extracellular electron transfer pathways conferring microbial adaptivity to surface redox potential changes.
    Ishii S; Suzuki S; Tenney A; Nealson KH; Bretschger O
    ISME J; 2018 Dec; 12(12):2844-2863. PubMed ID: 30050163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying the potential extracellular electron transfer pathways from a c-type cytochrome network.
    Ding DW; Xu J; Li L; Xie JM; Sun X
    Mol Biosyst; 2014 Dec; 10(12):3138-46. PubMed ID: 25227320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct Electron Conductance Regimes in Bacterial Decaheme Cytochromes.
    Barrozo A; El-Naggar MY; Krylov AI
    Angew Chem Int Ed Engl; 2018 Jun; 57(23):6805-6809. PubMed ID: 29663609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-heme cytochromes--new structures, new chemistry.
    Mowat CG; Chapman SK
    Dalton Trans; 2005 Nov; (21):3381-9. PubMed ID: 16234915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.