These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 30015249)
1. Microalgae hydrothermal liquefaction and derived biocrude upgrading with modified SBA-15 catalysts. Li J; Fang X; Bian J; Guo Y; Li C Bioresour Technol; 2018 Oct; 266():541-547. PubMed ID: 30015249 [TBL] [Abstract][Full Text] [Related]
2. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae. Duan P; Wang B; Xu Y Bioresour Technol; 2015 Jun; 186():58-66. PubMed ID: 25802049 [TBL] [Abstract][Full Text] [Related]
3. Catalytic hydrothermal liquefaction of rice straw for production of monomers phenol over metal supported mesoporous catalyst. Ding YJ; Zhao CX; Liu ZC Bioresour Technol; 2019 Dec; 294():122097. PubMed ID: 31539853 [TBL] [Abstract][Full Text] [Related]
4. Effect of acidic, neutral and alkaline conditions on product distribution and biocrude oil chemistry from hydrothermal liquefaction of microalgae. Zhang B; He Z; Chen H; Kandasamy S; Xu Z; Hu X; Guo H Bioresour Technol; 2018 Dec; 270():129-137. PubMed ID: 30216922 [TBL] [Abstract][Full Text] [Related]
5. Effect of temperature, water loading, and Ru/C catalyst on water-insoluble and water-soluble biocrude fractions from hydrothermal liquefaction of algae. Xu D; Savage PE Bioresour Technol; 2017 Sep; 239():1-6. PubMed ID: 28500883 [TBL] [Abstract][Full Text] [Related]
6. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Li H; Liu Z; Zhang Y; Li B; Lu H; Duan N; Liu M; Zhu Z; Si B Bioresour Technol; 2014 Feb; 154():322-9. PubMed ID: 24413449 [TBL] [Abstract][Full Text] [Related]
7. Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp. Shakya R; Adhikari S; Mahadevan R; Hassan EB; Dempster TA Bioresour Technol; 2018 Mar; 252():28-36. PubMed ID: 29306126 [TBL] [Abstract][Full Text] [Related]
8. Ni-Ru/CeO Xu D; Guo S; Liu L; Hua H; Guo Y; Wang S; Jing Z Biomed Res Int; 2018; 2018():8376127. PubMed ID: 29854797 [TBL] [Abstract][Full Text] [Related]
9. Robust Mesoporous CoMo/γ-Al Bleta R; Schiavo B; Corsaro N; Costa P; Giaconia A; Interrante L; Monflier E; Pipitone G; Ponchel A; Sau S; Scialdone O; Tilloy S; Galia A ACS Appl Mater Interfaces; 2018 Apr; 10(15):12562-12579. PubMed ID: 29578684 [TBL] [Abstract][Full Text] [Related]
10. Biofuel from wastewater-grown microalgae: A biorefinery approach using hydrothermal liquefaction and catalyst upgrading. Silva TA; do Couto EA; Assemany PP; Costa PAC; Marques PASS; Paradela F; Reis AJDD; Calijuri ML J Environ Manage; 2024 Sep; 368():122091. PubMed ID: 39116814 [TBL] [Abstract][Full Text] [Related]
11. Hydrothermal liquefaction of Cyanidioschyzon merolae and the influence of catalysts on products. Muppaneni T; Reddy HK; Selvaratnam T; Dandamudi KPR; Dungan B; Nirmalakhandan N; Schaub T; Omar Holguin F; Voorhies W; Lammers P; Deng S Bioresour Technol; 2017 Jan; 223():91-97. PubMed ID: 27788432 [TBL] [Abstract][Full Text] [Related]
12. Prediction model of biocrude yield and nitrogen heterocyclic compounds analysis by hydrothermal liquefaction of microalgae with model compounds. Sheng L; Wang X; Yang X Bioresour Technol; 2018 Jan; 247():14-20. PubMed ID: 28946088 [TBL] [Abstract][Full Text] [Related]
13. Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae. Hu Y; Feng S; Yuan Z; Xu CC; Bassi A Bioresour Technol; 2017 Sep; 239():151-159. PubMed ID: 28521224 [TBL] [Abstract][Full Text] [Related]
14. Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk. Zhu Z; Si B; Lu J; Watson J; Zhang Y; Liu Z Bioresour Technol; 2017 Nov; 243():9-16. PubMed ID: 28651143 [TBL] [Abstract][Full Text] [Related]
15. Low-temperature catalyst based Hydrothermal liquefaction of harmful Macroalgal blooms, and aqueous phase nutrient recycling by microalgae. Kumar V; Kumar S; Chauhan PK; Verma M; Bahuguna V; Joshi HC; Ahmad W; Negi P; Sharma N; Ramola B; Rautela I; Nanda M; Vlaskin MS Sci Rep; 2019 Aug; 9(1):11384. PubMed ID: 31388042 [TBL] [Abstract][Full Text] [Related]
16. Hydrothermal liquefaction of corn straw with mixed catalysts for the production of bio-oil and aromatic compounds. Chen Y; Dong L; Miao J; Wang J; Zhu C; Xu Y; Chen G; Liu J Bioresour Technol; 2019 Dec; 294():122148. PubMed ID: 31541976 [TBL] [Abstract][Full Text] [Related]
17. Hydrothermal liquefaction of microalgae over transition metal supported TiO Wang W; Xu Y; Wang X; Zhang B; Tian W; Zhang J Bioresour Technol; 2018 Feb; 250():474-480. PubMed ID: 29197769 [TBL] [Abstract][Full Text] [Related]
18. Hydrothermal liquefaction of Ulva prolifera macroalgae and the influence of base catalysts on products. Yan L; Wang Y; Li J; Zhang Y; Ma L; Fu F; Chen B; Liu H Bioresour Technol; 2019 Nov; 292():121286. PubMed ID: 31386946 [TBL] [Abstract][Full Text] [Related]
19. Catalytic upgrading of duckweed biocrude in subcritical water. Zhang C; Duan P; Xu Y; Wang B; Wang F; Zhang L Bioresour Technol; 2014 Aug; 166():37-44. PubMed ID: 24880811 [TBL] [Abstract][Full Text] [Related]
20. Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5. Xu Y; Zheng X; Yu H; Hu X Bioresour Technol; 2014 Mar; 156():1-5. PubMed ID: 24472700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]